Geo-redundancy

iINstantc-)nnect

Geo-redundancy

Product guide for prerelease

Copyright © 2024, Instant Connect Software, LLC. All rights reserved.
Document version 1841, produced on Friday, September 06, 2024.

main 90adc8bf40040649230176bbdd465f6261a2d8e0

Instant Connect Software, LLC

Geo-redundancy

ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE
ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS
MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF
THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. STA GROUP DISCLAIMS ALL WAR-
RANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

INNO EVENT SHALL INSTANT CONNECT LLC ORITS SUPPLIERS BE LIABLE FORANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR
LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF
STA GROUP ORITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Trademarks mentioned in this document are the properties of their respective owners.

Instant Connect Software, LLC 2

Geo-redundancy

Contents

1 Document History
2 Tools

3 Prerequisites

3.1 Connectivity Requirements . . .
3.2 Kubernetes Setup Requirements
33 Planning
3.3.1 Clusterlevel
3.3.2 Nodelevel

3.3.3 Kubernetes Cluster Setup

4 |Installation

4.1 Overview
4.2 Kilo/WireGuard
421 Overview
422 Install
4.2.3 Checkinstall
424 AddPeers.........
425 CheckPeers
43 CoreDNS
43.1 Overview
432 Install
433 CheckCoreDNS
4.4 InstallingICE
441 Overview

4.4.2 Install ICE ininitial cluster
4.4.3 Seed ICE Installation on all
4.4.4 Resume Initial Installation

otherclusters.

44,5 CheckInitial Instant Connect Enterprise Installation
4.4.6 Overriderandominitialpassword
447 CompleteICEinstallationonall otherclusters
4.4.8 CheckICEinstallationonallclusters

5 Datare-synchronization after a Data Center outage

5.1 Re-sychronizeKafka
5.1.1 Check MirrorMaker2 status

10

12
12
13
13
13
14
16
19
20
20
20
23
24
24
24
27
29
29
33
33
35

36
36
36

Instant Connect Software, LLC

Geo-redundancy

5.2 Re-sychronize Cassandradatabase 37
5.3 Re-sychronize local Elasticsearchdata 37
54 MinlOSyncFailure e e e e e e 38
6 Upgrading ICE Server 39
7 Appendix A: Full Sampleice_dcl.json 40
8 Appendix B: Full Sample seed_dc2.json 43
9 Appendix C: FullSample ice_dc2.json 44
Instant Connect Software, LLC 4

Geo-redundancy

List of Tables

2 Example ClusterIPRanges e
3 Examplenodeinformation-1
4 Examplenodeinformation-2

Instant Connect Software, LLC

Geo-redundancy

1 Document History

Publication Date

May 29, 2024
April 15,2024

September 20,
2023

July 27,2023
July 24,2023
April 25,2023
February 17,2023
December 1, 2022

September 26,
2022
April 18,2022

March 15,2022

2 Tools

Product
Release
3.5.1
3.5.0
3.4.0

3.3.0
3.3.0
3.2.0
3.2.0
3.2.0

3.1.2

3.11

3.1.0

Notes

Updated ICE Server version reference to 3.5.41629.
Updated ICE Server version reference to 3.5.41160.

No updates.

Updated ICE Server version reference to 3.3.28975.
Updated version reference to 3.3.28856.

Updated ICE Server version reference to 3.2.26273.
Updated ICE Server version reference to 3.2.24516.

Release version number updates. Will be removing reference
to kubespray, which is no longer supported. Also, much of
the process and functionality described in this document is
now handled by the ‘ICE OS Configuration Wizard’. See the
ICE Server Installation Guide for more information.

No updates.

Updated command for setting default storage class. Updated
command to re-sychronize local Elasticsearch data.

Document created.

+ This guide assumes that helm and kubect'l are installed.

+ The Instant Connect helm repo can be configured with

helm \
repo \
add \

icet-helm \

https://ic.repo.dillonkane.com:443/artifactory/icet-helm \
--username -instantconnect-artifactory \

Instant Connect Software, LLC

Geo-redundancy

--password
AKCp5bBgxtGQLmMQrCBufrWBvDQLKQazZ2BGzpgCILN8VNWBizdTtA539JgMITHUTUCr9ehgPxY

and

helm repo update

+ We will use a tool called kubemcsa available here: https://github.com/admiraltyio/multiclus
ter-service-account/releases/tag/v0.6.1

3 Prerequisites

Requirements to run Instant Connect Enterprise in a geo-redundant setting can be broken into two
categories

3.1 Connectivity Requirements

« Pod IPs must be routable between all clusters
« Service IPs must be routable between all clusters
+ DNS queries must work across clusters

3.2 Kubernetes Setup Requirements

These requirements are a result of the particular configuration that Instant Connect recommends for
meeting the connectivity requirements above. If those connectivity requirements are met by another
method, these may be unnecessary.

+ Kubernetes must be configured to assign pod IP addresses from CIDRs allocated to each node
+ Kubernetes must be configured to use the Flannel CNI plugin in “host-gw” mode
+ All Kubernetes clusters must have unique, non-overlapping pod and service CIDRs

To avoid conflicts with IPs already in use, we recommend updating the default IPs in CIDR
(e.g., Kilo, WireGuard, docker0) before proceeding.

3.3 Planning

A well-planned configuration is key to ensuring a successful geo-redundant ICE installation. The con-
figuration described below is provided as an example, and may or may not be appropriate for a given

Instant Connect Software, LLC 7

https://github.com/admiraltyio/multicluster-service-account/releases/tag/v0.6.1
https://github.com/admiraltyio/multicluster-service-account/releases/tag/v0.6.1

Geo-redundancy

installation. These values will be used throughout the document and will have to be substituted dur-

ing an installation.

3.3.1 Cluster level

Table 2: Example Cluster IP Ranges

DC1
WireGuard Node IPs 10.80.0.0/16
Pod IPs 10.90.0.0/16
Service IPs 10.100.0.0/16
DNS IP 10.100.0.10
Kubernetes service IP 10.100.0.1

3.3.2 Node Level

DC2

10.110.0.0/16

10.120.0.0/16
10.130.0.0/16
10.130.0.10

10.130.0.1

Description

Used to allocate IP addresses to the
WireGuard network interface created
on each node

CIDR from which to allocate pod IPs
CIDR from which to allocate service IPs

IP of the cluster internal DNS service.
Must be within the service CIDR

IP of the Kubernetes API within the
cluster. Almost invariably the .1 of the
service CIDR

Values here are a consequence of choices made at the cluster level and are recoverable through var-

ious methods of introspection. Populating this table for each node will make subsequent configura-

tion easier and is recommended.

Table 3: Example node information - 1

dcl-1
IP 192.168.1.105
Cluster DC1
Hostname dcl-1

Description

IP address that would be reachable by other nodes,

before any VPN setup

Which cluster does this node belong to

Hostname

Instant Connect Software, LLC

Geo-redundancy

dcl-1

Pod CIDR 10.90.0.0/24

WireGuard IP “

“»

WireGuard public key

Table 4: Example node information - 2

Cluster

Hostname

Pod CIDR

WireGuard IP

WireGuard public key

dc2-1

192.168.1.106

DC2

dc2-1
10.120.0.0/24

[{(3H

“»

Description

The cluster’s pod CIDR will be divided among the
nodes of the cluster. Retrievable from the node
spec like so kubectl get node dcl_1 -o
jsonpath='{.spec.podCIDR}"

Placeholder, unknown until we setup Kilo and
WireGuard

Placeholder, unknown until we setup Kilo and
WireGuard

Description

IP address that would be
reachable by other nodes,
before any VPN setup

Which cluster does this node
belong to

Hostname

The cluster’s pod CIDR will be
divided among the nodes of
the cluster. Retrievable from
the node spec like so
kubectl get node
dc2_1 -o jsonpath='{.
spec.podCIDR}'

Placeholder, unknown until we
setup Kilo and WireGuard

Placeholder, unknown until we
setup Kilo and WireGuard

Instant Connect Software, LLC

Geo-redundancy

3.3.3 Kubernetes Cluster Setup

3.3.3.1 Overview To setup our clusters, we’ll be using Kubespray, checked out at git tag v2.15.0.

See https://kubespray.io/ for basic instructions before proceeding.

Proper time synchronization between all cluster nodes is critical, so the system administrator
should verify that Network Time Protocol (NTP) is enabled and properly configured.

3.3.3.2 Installation

3.3.3.2.1 Setup Inventory

« Create your inventory files as normal. For example, inventory/dcl/inventory.ini

looks like this:

[all]

dcl ansible_host=192.168.1.105 ip=192.168.1.105

[kube-master]
dcl

[etcd]
dcl

[kube-node]
dcl

[calico-rr]
[k8s-cluster:children]
kube-master

kube-node
calico-rr

3.3.3.2.2 Required Options

File

Option

Value

group_vars/k8s-
cluster/k8s-cluster.
yml

kube_network_plugin

flannel

Instant Connect Software, LLC

10

https://kubespray.io/

Geo-redundancy

File Option Value

group_vars/k8s- kube_service_addresses 10.100.0.0/16
cluster/k8s-cluster.
yml

group_vars/k8s- kube_pods_subnet 10.90.0.0/16
cluster/k8s-cluster.
yml

group_vars/k8s- skydns_server 10.100.0.10
cluster/k8s-cluster.
yml

group_vars/k8s- kubeconfig_localhost* true
cluster/k8s-cluster.
yml

group_vars/k8s- flannel_backend_type host-gw
cluster/k8s-net-
flannel.yml

*Optional, but useful

There are no other requirements or guidance on Kubespray options - appropriate configuration is
situation specific.

3.3.3.2.3 Create Clusters Create the clusters by

ansible-playbook \
-i 1dnventory/dcl/inventory.ini \
-—-become cluster.yml \
-u exampleuser

Replace with values that are appropriate, add authentication and privilege escalation arguments as
necessary for the situation. Setting up the user account (exampleuser in this example) with pass-
wordless sudo permission is convenient but not required

The resulting kubeconfig will be saved as inventory/dcl/artifacts/admin.conf. The geo
instructions assume that this file will be located at ~/ . kube /dc1, so copy or adjust accordingly.

3.3.3.2.4 Setting Up Storage Storage is a cluster-specific decision, but, for simplicity, we can use
Rancher’s local-path-provisioner.

Instant Connect Software, LLC 11

Geo-redundancy

Install the storage class and provisioner:

kubectl \

apply \
-f https://raw.githubusercontent.com/rancher/local-path-provisioner/
master/deploy/local-path-storage.yaml

NOTE: Indentation in a yaml file is significant. Do not alter the identation of the key/values in
local-path-storage.yaml

For simplicity, set this storage class as the default:

kubectl \
patch storageclass \
local-path \
-p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-
class":"true"}}}!

4 Installation

4.1 Overview

There will be several json files involved in this process, eventually leading to a folder populated like
so:

|

| —— coredns

| — coredns_dcl.json

| — coredns_dc2.json

| — dce

| — dce_dcl.json

| — dce_dc2.json

| — kilo

| — kilo_dcl_partl.json
| — kilo_dcl_part2.json
| — kilo_dc2_partl.json
| — kilo_dc2_part2.json
| — seed

|

L seed_dc2.json

Instant Connect Software, LLC 12

Geo-redundancy

4.2 Kilo/WireGuard
4.2.1 Overview

We use Kilo to create an overlay network that spans our clusters, with similar properties to the overlay
networks we construct for ordinary Kubernetes clusters. Under the hood, this works by creating a
WireGuard mesh between all nodes in our clusters.

4.2.2 Install

+ If not done already, install WireGuard on every cluster node using your operating system’s pack-
age manager. Specific instructions can be found here: https://www.wireguard.com/install/. It
is not necessary to do any WireGuard setup such as key generation or interface creation at this
time.

+ Kilo tries to automatically find the correct endpoint to use for establishing connections, but can
fail when the Docker shim is used in a cluster (the discovered endpoint ends up as the gateway
of the Docker network). To ensure correctness, we can annotate all of our nodes with the correct
IP (adjust for successive clusters):

export KUBECONFIG=~/.kube/dcl
for node in $(kubectl get nodes --no-headers | cut -d ' ' -f 1); do
IP=S$(kubectl \
get node $node \
-0 jsonpath \
--template "{.status.addresses[0].address}")
kubectl annotate node $node kilo.squat.ai/force-endpoint=$IP:51820
kubectl annotate node $node kilo.squat.ai/persistent-keepalive=10
done

export KUBECONFIG=~/.kube/dc2
for node in $(kubectl get nodes --no-headers | cut -d ' ' -f 1); do
IP=S(kubectl \
get node $node \
-0 jsonpath \
--template "{.status.addresses[0].address}")
kubectl annotate node $node kilo.squat.ai/force-endpoint=$IP:51820
kubectl annotate node $node kilo.squat.ai/persistent-keepalive=10
done

+ Populate kilo/kilo_dcl_partl.json like the following:

"config": {
"multidatacenter": {

Instant Connect Software, LLC 13

https://www.wireguard.com/install/

Geo-redundancy

"wgCIDR": "10.80.0.0/16"
¥

"peers": []

Now run:

helm --kubeconfig ~/.kube/dcl \
upgrade -i \
kilo-dcl \
instantconnect/ice-kilo \
--version 2.0.10 \
-f kilo/kilo_dcl_partl.json

+ Repeat the process for DC2 by creating kilo/kilo_dc2_partl.json:

{
"config": {
"multidatacenter": {
"wgCIDR": "10.110.0.0/16"
I
"peers": []
}
}
Now run:

helm --kubeconfig ~/.kube/dc2 \
upgrade -1 \
kilo-dc2 \
instantconnect/ice-kilo \
--version 2.0.10 \
-f kilo/kilo_dc2_partl.json

4.2.3 Check install
Once the kilo pod in the kube-system namespace has successfully initialized, it will add annotations
to all nodes in the cluster, viewable with

kubectl --kubeconfig ~/.kube/dcl describe node | grep -A 20 "“Annotations"

Example:

Annotations: kilo.squat.ai/endpoint: 192.168.1.105:51820
kilo.squat.ai/internal-ip: 192.168.1.105/24
kilo.squat.ai/key:

___PUBLIC_KEY_OF_KILOO_INTERFACE_ON_DC1___

Instant Connect Software, LLC 14

Geo-redundancy

kilo.squat.ai/last-seen: 1612484404
kilo.squat.ai/wireguard-ip: 10.80.0.1/16

If any of those annotations are missing or the kilo pod is crashing, verify that WireGuard is correctly
installed on all nodes and that the wgCIDR value is correctly populated.

Instant Connect Software, LLC 15

Geo-redundancy

You should also be able to ssh to a given node and run sudo wg and see output like this, matching
the annotations:

$ sudo wg
interface: kilo0®
public key: ___PUBLIC_KEY_OF_KILOO_INTERFACE_ON_DC1___

private key: (hidden)
listening port: 51820

If your cluster has multiple nodes, they’ll be represented in the output as “peers”. Later, we’ll be
adding the nodes of any remote clusters as peers, but the objective here is simply to see that the in-
terface is set up.

If the annotations are correct, repeat the steps for each cluster with the appropriate values.

Populate the WireGuard key and WireGuard IP values for each node in your tracking document.

4.2.4 Add Peers

Now we will create a mesh of the nodes between the cluster by creating “peer” objects for each node of
each remote cluster. Expand on the contentin kilo/kilo_dcl_partl.json,andsaveaskilo
/kilo_dcl_part2.json

{
"config": {
"multidatacenter": {
"wgCIDR": "10.80.0.0/16"
}s
"peers": [
{
"name": "dc2-1",
"allowedIPs": [
"10.120.0.0/16",
"10.110.0.1/32",
"10.130.0.0/16"
1,
"endpoint": {
"ip": "192.168.1.106",
"port'": 51820
1,
"publicKey": "___PUBLIC_KEY_OF_KILOO_INTERFACE_ON_DC2___",

"persistentKeepalive": 10

Instant Connect Software, LLC 16

Geo-redundancy

Perform the same with kilo/kilo_dc2_partl.json,andsaveas kilo/kilo_dc2_part2.
json

{
"config": {
"multidatacenter": {
"wgCIDR": "10.130.0.0/16"
1,
"peers": [
{
"name": "dc1-1",
"allowedIPs": [
"10.90.0.0/16",
"10.80.0.1/32",
"10.100.60.6/16"
1,
"endpoint": {
"ip": "192.168.1.105",
"port'": 51820
i
"publicKey": "___PUBLIC_KEY_OF_KILOO_INTERFACE_ON_DC1___",
"persistentKeepalive": 10
}
]
}
}

Breaking down the peer object piece by piece:

Field Value

name It’s easiest to use hostname here

allowedIPs An array of: the portion of the pod CIDR assigned specifically to this node;
the WireGuard IP of the node; and the full service CIDR.

endpoint The non-WireGuard IP of the node and the default WireGuard port if
51820

publicKey The public key of the node

persistentKeepalive Optional, helps if one side of the connection is behind a NAT

There will be a peer object for each node in each remote cluster. In this example, each cluster only has
1 member.

Pay particularly close attention to the Al lowedIPs section - mostinstallation issues will come from
misconfiguration of this field. The overall effect of AllowedIPs is twofold: first, when receiving

Instant Connect Software, LLC 17

Geo-redundancy

a packet, WireGuard will check if the source IP is allowed for the peer that sent it, if not the packet
is dropped; second, when transmitting a packet to some destination IP, WireGuard will use the
AllowedIPs field to identify which peer the packet should go to, encrypt it with the appropriate
key, and send it to the appropriate endpoint.

In this example we have 1 peer, dc2-1 with WireGuard listening at 192.168.1.106:51820. We
have 3 AllowedIPs CIDRs:

+ 10.120.0.0/16: The pod IPs that could be allocated to the specific remote node. Since this
remote is a single-node cluster, we can just give it the entire range determined in our original
setup and planning. In more complex scenarios, the allocated pod CIDR for a node is retrievable
from the Kubernetes node object by means such as kubectl describe node.

¢+ 10.110.0.1/32: This is the IP of the WireGuard interface on the remote node. Recall that
for dc2, we set the wgCIDR to 10.110.0.0/16. Kilo then allocated an IP for each node’s
WireGuard interface from this range. This means that there is a 1:1 correspondence between
this IP and the endpoint IP, hence the /32.

+ 10.130.0.0/16: This is the service IP range for the remote cluster. Since these IPs are not
associated with any particular node, and there is no preferred node that they should go to, we
include this for all nodes.

Once the configuration file is ready, create the peers on each cluster by upgrading with the —-
set config.enablePeers=true argument, replacing the references to the kubeconfig and
kilo_dcl_part2.json asappropriate:

helm --kubeconfig ~/.kube/dcl \
upgrade -i \
kilo-dcl \
instantconnect/ice-kilo \
-f kilo/kilo_dcl_part2.json \
--version 2.0.10 \
--set config.enablePeers=true

Then perform the same with DC2:

helm --kubeconfig ~/.kube/dc2 \
upgrade -i \
kilo-dc2 \
instantconnect/ice-kilo \
-f kilo/kilo_dc2_part2.json \
--version 2.0.10 \
--set config.enablePeers=true

Instant Connect Software, LLC 18

Geo-redundancy

4.2.5 Check Peers

SSH to a node and run sudo wg. You should see some output like:

$ sudo wg

interface: kiloO
public key: Y7tq+Npd9QzsmyVpDDvijkJI37fDd/VvUgpD740XI0yo=
private key: (hidden)
listening port: 51820

peer: IS5x1SP1s7ilMultT/y/XPT4aFrHu7zXM9crqF5yKQQ=
endpoint: 192.168.1.106:51820
allowed ips: 10.110.0.1/32, 10.120.0.0/24, 10.130.0.0/16
latest handshake: 3 seconds ago
transfer: 348 B received, 404 B sent

If the “latest handshake” and “transfer” lines are absent, the peer is not connected. Try to ping an
IP in the “allowed ips” range (such as 10.110.0.1 in this example) to force a connection and try again.
Verify the connection on all nodes.

Similarly, there should also be connectivity to pods and services within the remote Kubernetes cluster.
For example, from any of the nodes we have connectivity to the Kubernetes API of any of the clusters,
by their cluster internal IP address

Instant Connect Software, LLC 19

Geo-redundancy

$ curl https://10.100.0.1 -k

{
"kind": "Status",

"apiVersion": "v1",
"metadata": {

b

"status": "Failure",

"message": "forbidden: User \'"system:anonymous\" cannot get path \"/\"",
"reason": "Forbidden",

"details": {

}s
"code": 403

$ curl https://10.130.0.1 -k
"kind": "Status",

"apiVersion": "v1'",
"metadata": {

I

"status": "Failure",

"message": "forbidden: User \'"system:anonymous\" cannot get path \"/\"",
"reason": "Forbidden",

"details": {

1,
"code": 403

4.3 CoreDNS
4.3.1 Overview

We use kubernetai, which is an external plugin for CoreDNS that allows DNS queries to fall through
from the local cluster to successive clusters. This plugin is essentially the same as the standard Kuber-
netes CoreDNS plugin, the only real difference being that it allows specifying multiple clusters.

4.3.2 Install

First remove any existing CoreDNS deployments and services, if they exist

kubectl --kubeconfig ~/.kube/dcl -n kube-system delete deploy coredns
kubectl --kubeconfig ~/.kube/dcl -n kube-system delete svc kube-dns

Instant Connect Software, LLC 20

Geo-redundancy

Repeat for all clusters

The particular name of the deployment and service will vary based on installation method, but

will generally be some variant of coredns or kube-dns. However, nodelocaldns instances

can remain - these are simply a caching mechanism.

WARNING: This is critical, having both ordinary and multi-cluster DNS running simultaneously

can lead to non-deterministic bootstrapping of subsequent components such as Cassandra - re-

covering from this can require specialized expertise.

Next, we need to provide the credentials necessary for each CoreDNS instance to query the remote

Kubernetes APIs. For convenience, it’s easiest to just replicate a complete set of credentials to all

clusters like so:

export KUBECONFIG_A=~/.kube/dcl
export KUBECONFIG_B=~/.kube/dc2

#

For DC1

export KUBECONFIG=$KUBECONFIG_A
kubemcsa export \

--kubeconfig=SKUBECONFIG_A \

-n kube-system \

coredns \

--as dcl | kubectl -n kube-system

kubemcsa export \

#

——kubeconfig=$KUBECONFIG_B \

-n kube-system \

coredns \

--as dc2 | kubectl -n kube-system

For DC2

export KUBECONFIG=$KUBECONFIG_B
kubemcsa export \

--kubeconfig=$KUBECONFIG_A \

-n kube-system \

coredns \

--as dcl | kubectl -n kube-system

kubemcsa export \

--kubeconfig=$KUBECONFIG_B \

-n kube-system \

coredns \

--as dc2 | kubectl -n kube-system

apply -f -
apply -f -
apply -f -
apply -f -

Instant Connect Software, LLC

21

Geo-redundancy

This creates a dc1 and dc2 secret in the kube-system namespace of each cluster. If your clusters
are named differently, adjust accordingly.

+ Now create coredns/coredns_dcl.json:

{
"config": {
"multidatacenter": {
"des": [
{
"name": "dcl",
"kubernetesEndpoint": "https://10.100.0.1"
1,
{
"name": "dc2",
"kubernetesEndpoint": "https://10.130.0.1"
}
1,
"dnsIP": "10.100.0.10"
b
}
}
+ and then create coredns/coredns_dc2.json:
{
"config": {
"multidatacenter": {
"des": [
{
"name": "dcl",
"kubernetesEndpoint": "https://10.100.0.1"
i
{
"name": "dc2",
"kubernetesEndpoint": "https://10.130.0.1"
}
1,
"dnsIP": "10.130.0.10"
}
}
}

« The name must match what was fed into the kubemcsa commands above

« The kubernetesEndpointistheinternal Kubernetes service IP associated with that cluster.
Note that while the Kubernetes APl is customarily available on port 6443 externally, it listens on
443 inside the cluster network.

« All clusters can use the same dcs array, only dnsIP must be adjust for each cluster.

Instant Connect Software, LLC 22

Geo-redundancy

+ Apply to each cluster with:

helm \
--kubeconfig ~/.kube/dcl \
upgrade -1 \
coredns—-dcl \
icet-helm/ice-coredns \
--version 3.5.41629 \
-f coredns/coredns_dcl.json

helm \
--kubeconfig ~/.kube/dc2 \
upgrade -1 \

coredns-dc2 \
icet-helm/ice-coredns \
--version 3.5.41629 \

-f coredns/coredns_dc2.json

varying the kubeconfigand coredns/coredns_dc1l. json references accordingly.

4.3.3 Check CoreDNS

We can setup a quick nginx pod in 1 cluster and attempt to connect to it from the other:

kubectl \
--kubeconfig ~/.kube/dcl \
run \
--image nginx \
test-dcl \
-—-port 80 \
-—expose

kubectl \
--kubeconfig ~/.kube/dc2 \
run \
=it —--rm \
--image busybox \
busybox

This should leave you with a prompt inside the busybox container. Hit the nginx container like this:

wget -0- test-dcl

If successful, delete these pods and services

kubectl --kubeconfig ~/.kube/dcl delete pod test-dcl’
kubectl --kubeconfig ~/.kube/dcl delete svc test-dcl’

Instant Connect Software, LLC

23

Geo-redundancy

and repeat the process in the other direction. It’s necessary to delete the first side so the (now) local
nginx service doesn’t mask the remote one.

4.4 Installing ICE
4.4.1 Overview

The process for installing ICE in a geo-redundant setting is slightly different than an ordinary installa-
tion. The configuration changes aside, the procedure now has to look something like this:

+ Install ICE on some initial cluster - this cluster is only special for bootstrapping the initial instal-
lation and has no bearing on failure tolerance. In this document, that clusteris DC1

« This first ICE installation will hang, since it will be configured to expect some necessary creden-
tials from all other clusters.

« Seed ICE components to all other clusters. This is done to create expected service accounts and
objects.

+ Retrieve the credentials from those clusters and load them into the first cluster using kubemcsa
again

+ Allow the ICE installation to finish on the first cluster

+ Ensure that Cassandra has accepted and propagated the schema updates to all clusters

« Iterate through and complete all seeded installations

« Test Cassandra replication

« Test Kafka replication

+ Test ICE client behavior

4.4.2 InstallICE in initial cluster

» Create aminimalice/ice_dcl. json. Please refer to Appendix A for a full sample.

"charts": {
"JceMinio": {
"enabled": true,
"values": {
"multidatacenter": {
"enabled": true,
"currentDC": "dcl",
"remoteDC": '"dc2"
}
}
by

Instant Connect Software, LLC 24

Geo-redundancy

"rallypoint": {
"enabled": true,
"values": {
"rallypoint": {
llnamell: |ldclll’
"peerMeshes": [
"jce-rallypoint-discovery-dc2"
]
+
"patch": {
"agent": {
"patchAgentName": "Default Patch Agent - dcl"
}
I
"reflector": {
"name": "Default Reflector - dcl",
"config": {
"multicastInterfaceName": "etho"
}
}
+
b
"jceCassandra": {
"enabled": true,
"values": {
"multi-casskop": {

"k8s": {
"local": "dc1",
"remote": [

lldC2|l

]

}

}
}
b

"instantConnectEnterprise": {
"enabled": true,
"spec": {
"timeout": 10800
1,
"values": {
"config": {
"include": {
"multiCassKop": true
I
"multidatacenter": {
"enabled": true,

"currentDC": "dcl",
"des": [
{
"name": "dcl"

Instant Connect Software, LLC

25

Geo-redundancy

I
{

"name'": "dc2"

+ Thisis a minimal example for geo-redundancy, include additional options as desired.

+ Goingitem by item:

rallypoint Description

rallypoint.name This is used to create a distinct service for use in
discovery and meshing. The example above resultsin a
service named
ice-rallypoint-discovery-dcl.

rallypoint.peerMeshes An array of rallypoints to form a mesh with. These are
discovered by simple DNS lookups.

reflector.name A string name to display for the default reflectors.

reflector.config.multicastinterfaceName The name of the multicast interface the reflector should

bind to.
iceCassandra Description
local Used for naming datacenters within the Cassandra cluster.
remote An array of remote Kubernetes clusters. Corresponds to the name of

the secret expected by the Cassandra operator and the name of the
resulting Cassandra datacenter.

Instant Connect Software, LLC 26

Geo-redundancy

instantConnectEnterprise Description

multiCassKop Responsible for Cassandra initialization and reconciliation across all
clusters. Should only be enabled in 1.

currentDC Used in conjunction with dcs array for orchestrating the various
replication and coordination mechanisms

dcs An array (of maps, not strings) of all clusters expected to be part of the
geo-redundant system.

+ Apply this to the initial cluster with:

helm \
--kubeconfig ~/.kube/dcl \
-n ice-release \
upgrade -1 \
--create-namespace \
ice-helm-operator \
icet-helm/ice-helm-operator-develop \
--version 3.5.41629
-f dice/ice_dcl.json

4.4.3 Seed ICE Installation on all other clusters

Create seed/seed_dc2.json:

{
"charts": {
"jceMinio": {
"enabled": true,
"values": {
"multidatacenter": {
"enabled": true,
"currentDC": "dc2",
"remoteDC": "dcl"
}
+
b
"rallypoint": {
"values": {
"rallypoint": {
llnamell: |ldC2l|’
"peerMeshes": [
"jce-rallypoint-discovery-dcl"

]

Instant Connect Software, LLC 27

Geo-redundancy

b
"patch": {
"agent": {
"patchAgentName": "Default Patch Agent - dc2"
}
b
"reflector": {
"name": "Default Reflector - dc2"
}
+
b
"jceCassandra": {
"values": {
"multi-casskop": {
"enabled": false
}
+
s
"instantConnectEnterprise": {
"enabled": false
+
+
}

Apply to any remaining clusters:

helm \
--kubeconfig ~/.kube/dc2 \
-n ice-release \
upgrade -1i \
--create-namespace \
ice-helm-operator \
icet-helm/ice-helm-operator-develop \
--version 3.5.41629 \
-f seed/seed_dc2.json

Instant Connect Software, LLC

28

Geo-redundancy

4.4.4 Resume Initial Installation

NOTE Usewatch kubectl get nstomakesureice-cassandranamespaceappearsbe-
fore performing steps in this section.

export KUBECONFIG_A=~/.kube/dcl
export KUBECONFIG_B=~/.kube/dc2

export KUBECONFIG=$KUBECONFIG_A
kubemcsa export \
--kubeconfig=SKUBECONFIG_A \
-—namespace ice-cassandra cassandra-operator \
--as dcl \
| kubectl -n ice-cassandra apply -f -

kubemcsa export \
--kubeconfig=$KUBECONFIG_B \
-—namespace ice-cassandra cassandra-operator \
--as dc2 \
| kubectl -n ice-cassandra apply -f -

export KUBECONFIG=S$SKUBECONFIG_B
kubemcsa export \
--kubeconfig=SKUBECONFIG_A \
--namespace tice-cassandra cassandra-operator \
-—-as dcl \
| kubectl -n ice-cassandra apply -f -

kubemcsa export \
--kubeconfig=$KUBECONFIG_B \
-—-namespace ice-cassandra cassandra-operator \
-—-as dc2 \
| kubectl -n ice-cassandra apply -f -

We should now see the Cassandra operator start and begin to start the Cassandra nodes for each clus-
ter. This is a sequential operation and may take some time, on the order of 5-10 minutes.

Once Cassandra is fully started, the Instant Connect Enterprise installation in the first cluster will com-
plete.

4.4.5 Check Initial Instant Connect Enterprise Installation

First, verify that modelmanager has finished by checking the ice-arcus namespace:

$ kubectl -n dce-arcus get pods

NAME READY STATUS RESTARTS
AGE

Instant Connect Software, LLC 29

Geo-redundancy

client-bridge-764b4664bb-wmv6t

50m
elasticsearch-arcus-es-member-0

50m
modelmanager-git-22fcd93-8fncc

50m
platform-services-6949c8c57f-pngqw

50m
remote-installer-7bc7fdc5f7-nbrgb

50m
rest-bridge-7c955446dd-z89c2

50m
server-bridge-78dcf556c4-rcq7f

50m
swagger-ui-bf6965559-nwkfg

50m

telephony-registration-54fdb7554d-q7wfr

50m

Correct output is for the modelmanager pod to be Completed and all other pods to be Running

1/1
1/1
0/1
1/1
1/1
1/1
1/1
1/1

1/1

Running
Running
Completed
Running
Running
Running
Running
Running

Running

« Similarly, all podsinthe ice-rallypoint namespace should be Running. Delete any pods

that are not running and allow them to attempt to reinitialize.

« Check that Cassandra reports that it’s healthy

Note: If there is more than one Cassandra pod, you must repeat allnodetool commands

for each, one after another.

A correct response at DC1 looks something like this:

$ kubectl \
--kubeconfig ~/.kube/dcl \

-n ice-cassandra -c cassandra exec -it \

ice-dcl-rackl-0 \
-- nodetool status

Datacenter: dcl

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-— Address Load Tokens

Rack

UN 10.90.0.51 389 KiB 256
-4970-af4f-39c7ffbd9508 rackl

A correct response at DC2 looks something like this:

$ kubectl \
--kubeconfig ~/.kube/dc2 \

Owns (effective)

100.0%

Host ID

9ea2339d-3cc4

Instant Connect Software, LLC

30

Geo-redundancy

-n ice-cassandra -c cassandra exec -it \
ice-dc2-rackl-0 \
-- nodetool status

Datacenter: dc2

Status=Up/Down
| / State=Normal/Leaving/Joining/Moving
-— Address Load Tokens Owns (effective) Host ID
Rack
UN 10.120.0.31 472.56 KiB 256 100.0% 39fe4a96-7b39
-45c9-9a8b-88163224814d rackl

The UN (Up, Normal) is most critical. Other items such as IP address and datacenter name should
match expectations.

« Check that Cassandra has a consistent schema:

Healthy output looks like this in DC1:

$ kubectl \
--kubeconfig ~/.kube/dcl \
-n ice-cassandra -c cassandra exec -it \
ice-dcl-rackl-0 \
-- nodetool describecluster

Cluster Information:
Name: ice
Snitch: org.apache.cassandra.locator.GossipingPropertyFileSnitch
DynamicEndPointSnitch: enabled
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Schema versions:
4ca0c366-fd08-3745-8950-a585d6c80f9b: [10.120.0.31, 10.90.0.51]

Repeat the same check in DC2:

kubectl \
--kubeconfig ~/.kube/dc2 \
-n ice-cassandra -c cassandra exec -it \
ice-dc2-rackl-0 \
-- nodetool describecluster

All nodes should be listed in the array after a single schema version. If there is more than one schema
version listed, restart the Cassandra pods one-by-one, waiting for each pod to become fully ready
before restarting the next. The startup process will force a reconciliation of schema version.

« Finally, check that data has replicated correctly, by running a command like this against each
cluster. Note that the cluster name is injected into the pod name and adjust accordingly.

Instant Connect Software, LLC 31

Geo-redundancy

$ kubectl \
--kubeconfig ~/.kube/dcl \
-n ice-cassandra -c cassandra exec -it \
ice-dcl-rackl-0 \
-- cqlsh -e "select count(*x) from dev.changeset;"

Warning: Cannot create directory at "/home/cassandra/.cassandra’. Command
history will not be saved.

All clusters should provide the same output. For our purposes here, all that matters is that all clusters
agree - the exact number is irrelevant.

kubectl \
--kubeconfig ~/.kube/dc2 \
-n ice-cassandra -c cassandra exec -it \
ice-dc2-rackl-0 \
-- cqlsh -e "select count(*x) from dev.changeset;"

If a cluster says 0, that suggests that there was an issue with the bootstrapping process. Verify that
connectivity and DNS is working as it should in all clusters.

« Since consistency is so critical for us at this stage, we might as well also run a nodetool
repair on each Cassandra node before proceeding, starting with DC1:

kubectl \
--kubeconfig ~/.kube/dcl \
-n ice-cassandra -c cassandra exec -it \
ice-dcl-rackl-0 \
-- nodetool repair

then DC2

kubectl \
--kubeconfig ~/.kube/dc2 \
-n ice-cassandra -c cassandra exec -it \
ice-dc2-rackl-0 \
-- nodetool repair

Instant Connect Software, LLC 32

Geo-redundancy

4.4.6 Override random initial password

Some Instant Connect Enterprise services internal to the cluster need a credential to operate. We

generate this randomly, so it’s easy enough to just copy from the first cluster to all other clusters.

Retrieve the password (values in Kubernetes secrets are base64 encoded, so we retrieve and apply the

value as-is, rather than decoding and re-encoding)

$ kubectl \
--kubeconfig ~/.kube/dcl \
-n ice-arcus \
get secrets \
init-superuser-pass \
-o=jsonpath="'{.data.pass}'

aBcDeFgHiJkLmN==

Then, patch all other clusters to match:

$ kubectl \
--kubeconfig ~/.kube/dc2 \
-n ice-arcus \
patch \
secret \
init-superuser-pass \

-p '{"data":{"pass":"aBcDeFgHiJkLmN=="}}"

4.4.7 Complete ICE installation on all other clusters

Now we’ll finalize the installation of ICE on clusters. Create a minimal ice/ice_dc2

refer to Appendix C for a full sample.

{
"charts": {
"jceMinio": {
"enabled": true,
"values": {
"multidatacenter": {
"enabled": true,
"currentDC": "dc2",
"remoteDC": "dcl"
}
}
1,
"rallypoint": {
"values": {
"rallypoint": {
HnameH: lldczll,

.json. Please

Instant Connect Software, LLC

33

Geo-redundancy

"peerMeshes": [
"jce-rallypoint-discovery-dcl"
]
b
"patch": {
"agent": {
"patchAgentName": "Default Patch Agent - dc2"
}
+
"reflector": {
"name": "Default Reflector - dc2",
"config": {
"multicastInterfaceName": "etho"
}
}
+
b
"jceCassandra": {
"values": {
"multi-casskop": {
"enabled": false
}
+
1,
"instantConnectEnterprise": {
"spec": {
"timeout": 10800
b
"values": {
"config": {
"include": {
"multiCassKop": false
b
"multidatacenter": {
"enabled": true,
"currentDC": "dc2",
"des": [
{

"name": "dcl1"

"name": "dc2"

Instant Connect Software, LLC

Geo-redundancy

Similar to the ice/ice_dcl.json, specify any other desired options. Note that, while this is
broadly similarto ice/ice_dcl.json, fields indicating current cluster or remote endpoints may
be inverted, as here:

rallypoint:
name: dc2
peerMeshes:
- ice-rallypoint-discovery-dcl
reflector:
name: Default Reflector - dc2

and here:

multidatacenter:

currentDC: dc2
dcs:

- name: dcl

- name: dc2

enabled: true

Lastly, note that multicasskop remains disabled - that is only required in the first cluster.
+ Apply the configuration:

helm \
--kubeconfig ~/.kube/dc2 \
-n ice-release \
upgrade -i \
--create-namespace \
ice-helm-operator \
icet-helm/ice-helm-operator-develop \
--version 3.5.41629 \
-f dce/ice_dc2.json

+ Wait for modelmanager to complete as on the previous cluster

4.4.8 Check ICE installation on all clusters

« Check pods in the ice-rallypoint namespace in all clusters, restart any that aren’t

Running

+ There can be issues with the Kafka replication components deploying faster than Kafka be-
comes configured to their expectations. Itis a good idea to restart them at this point as a precau-
tion. These issues come about from the existence or non-existence of the various Kafka topics
at startup, so they are confined to installation. On each cluster, run:

Instant Connect Software, LLC 35

Geo-redundancy

kubectl \
-n ice-kafka \
delete pod \
-1 run=ksqldb

kubectl \
-n ice-kafka \
delete pod \
-1 app.kubernetes.io/name=kafka-mirror-maker-2

5 Datare-synchronization after a Data Center outage

In a Geo Redundancy setup, if the data center outage lasts:

+ Less than 1 hour: The data re-synchronization takes place automatically once the clusters in
both data centers are communicating again. The following steps are strongly recommended for
validation purposes.

« 1-2 hours: The data re-synchronization takes place automatically once the clusters in both data
centers are communicating again. However, the data re-synchronization time can be shortened
substantially by following the recovery steps below.

« More than 2 hours: The recovery steps below must be performed to ensure data is in sync
between the two data centers.

Note: Do not skip any of the recovery steps below. Each section of the process must be per-

formed.

5.1 Re-sychronize Kafka

Replication failure between clusters will break dynamic behaviors of the ICE clients, such as: - Chan-
nels being added to a user’s dashboard on membership change - Private call notifications not appear-
ing or not being responsive - Abrupt system reboots

5.1.1 Check MirrorMaker2 status

1. The MirrorMaker2 pod takes ~10 minutes to reach a ‘RUNNING’ status. If it fails to start within
this timeframe, then restart the pod.

2. Once the MirrorMaker2 pod on DC1 shows a ‘RUNNING’ status: kubectl -n +dice-kafka
get kafkamirrormaker2s.kafka.strimzi.io mm-dc2 -o=jsonpath='{.
status}'| jq

Instant Connect Software, LLC 36

Geo-redundancy

3. The ‘Conditions’ state should be ‘True’, while the ‘Connectors’ state should be ‘RUNNING’.
4. Once the MirrorMaker2 pod on DC2 shows ‘RUNNING’ status:

kubectl -n dce-kafka get kafkamirrormaker2s.kafka.strimzi.io mm-
dcl -o=jsonpath='{.status}'| jq

5. The ‘Conditions’ state should be ‘True’, while the ‘Connectors’ state should be ‘RUNNING’.

6. In this event, restart the MirrorMaker2 pod on DC1 first, once that DC1 pod is running, then
restart the MirrorMaker2 pod on DC2.

5.2 Re-sychronize Cassandra database

Note: If there is more than one Cassandra pod, you must perform nodetool repaironeach
pod, one after another.

Synchronization failure between Cassandra sites will manifest as inconsistency between sites (chan-
nel membership differences, license status, etc.). The most common cause of this is a network par-
tition that Cassandra has not been able to automatically reconcile. In this scenario, run nodetoo'l

repatir on each Cassandra node in every cluster, one after another. The first Cassandra node in
cluster DC1 can be repaired using this command:

kubectl \
--kubeconfig ~/.kube/dcl \
-n ice-cassandra exec -it \
ice-dcl-rackl-0 \
-- nodetool repair

Adjust the command as necessary for the remaining nodes.

Note that Cassandra repairs may cause interruptions of service. In ICE 2.0.0, this is a manual pro-
cess. For ICE 2.1.0 and later, though, a utility is included that continuously repairs subsections of the
database as needed, reducing or eliminating the need for manual repairs.

5.3 Re-sychronize local Elasticsearch data

Elasticsearch may fall out of sync in two ways. The first is for Elasticsearch to fall out of sync with
Cassandra. Elasticsearch can be manually re-synchronized with Cassandra by running:

kubectl \
-n ice-arcus \
create job \
resync-$(date "+%Y%mo%d-%H%M") \

Instant Connect Software, LLC 37

Geo-redundancy

-—from=cronjob/elastic-sync-dcl

kubectl \
-n ice-arcus \
create job \
resync-$(date "+%Y%m%d-%H%M") \
-—from=cronjob/elastic-sync-dc2

Adding a date reference is not strictly required, but helps with organization.
This forced resynchronization is also run automatically every day by default.
If Elasticsearch still fails to update, this indicates that this is actually a Kafka replication problem.

5.4 MinlO Sync Failure

By default, only the files directory is replicated between the data centers:

4% MinlO Browser

= files

& logs

The directory content is automatically resynchronized after a data center outage. In the very rare case
that a full resynchronization is required, follow the process below.

1. Redefine MinlO mirroring on DC1:

« Determine the replicaset’s name:

kubectl --kubeconfig ~/.kube/dcl -n ice-minio get replicasets

Instant Connect Software, LLC 38

Geo-redundancy

+ Delete thereplicaset that corresponds to the Minio mirroring, withminio-mirror- pre-
fix:

kubectl --kubeconfig ~/.kube/dcl -n ice-minio delete replicaset
minio-mirror-....

2. Redefine MinlO mirroring on DC2:

« Determine the replicaset’s name:

kubectl --kubeconfig ~/.kube/dc2 -n ice-minio get replicasets

+ Delete thereplicaset that corresponds to the Minio mirroring, withminio-mirror- pre-
fix:

kubectl --kubeconfig ~/.kube/dc2 -n ice-minio delete replicaset
minio-mirror-....

3. Confirm the replication is running properly by reviewing the Minio Mirror logs while the direc-
tory content is updated:
kubectl --kubeconfig ~/.kube/dcl -n dice-minio logs -f -1 app=minio-
mirror
kubectl --kubeconfig ~/.kube/dc2 -n dice-minio logs -f -1 app=minio-
mirror

6 Upgrading ICE Server

When upgrading ICE Server, there are some additional steps for geo-redundancy:
Notes:

+ Pleaserefertothe latest ICE Server Upgrade Guide for information on upgrading ICE Server.
+ We recommend an ad hoc backup of the server prior to beginning troubleshooting or up-
grade processes. To create an ad hoc backup, please see the Server Administration Guide,

Appendix A, Ad Hoc Server Backup.

1. Upgrade ICE Server on one cluster. It does not matter which cluster is upgraded first.
2. When done, follow the steps in the ‘Check Initial Instant Connect Enterprise Installation’ section

of this document.
3. UpgradeICE Server on the remaining cluster. This should go noticeably faster, since some of the

work was already done by the first cluster’s upgrade.
4. When done, follow the steps in the ‘Check ICE installation on all clusters’ section of this docu-

ment.

Instant Connect Software, LLC 39

Geo-redundancy

7 Appendix A: Full Sample ice_dcl.json

The following is a full sample ice/ice_dcl.json that may be used for installation with cluster
FQDN name (for enabling SSL/TLS access) and Geo redundancy. Underscored’___’valuesin the sam-
ple below must be replaced with the actual values provided during ICE installation. Please review the
ICE Server Administration Guide for allowed values.

{
"charts": {

"JceMinio": {

"enabled": true,
"values": {
"multidatacenter": {
"enabled": true,
"currentDC": "dcl",
"remoteDC": "dc2"
b
"config": {
"ingress": {
"hosts": [
" __DC1_FQDN___"
]
}
}
+

b

"icelLogging": {
"enabled": false

1,

"jceIngress": {
"enabled": true,
"values": {

"host": "___DC1_FQDN___"
}

1,

"jceMonitoring": {
"enabled": true,
"values": {

"grafana": {
"grafana.ini": {
"server": {

"domain": "___DC1_FQDN___"

1,

nsmtpu: {
"enabled": true,
"from_address": "___FULL_EMAIL_ADDRESS___",
"from_name": "___EMAIL_USER_COMMON_NAME___",
"host": "___SMTP_SERVER___:___ SMTP_SERVER_PORT___",
"user": "apikey",

Instant Connect Software, LLC 40

Geo-redundancy

"password": "___EMAIL_API_KEY___"

"skip_verify": true

K

}
I
"ingress": {

"enabled": true,

"hosts": [

" __DC1_FQDN___"

]

}

i

"prometheus": {
"server": {

"retention": "7d"

}

i

"loki": {
"config": {

"table_manager": {
"retention_deletes_enabled": true,
"retention_period": "7d"

}

}

}

+
b
"rallypoint": {
"values": {

"rallypoint": {
"name": "dc1",
"peerMeshes": [

"jce-rallypoint-discovery-dc2"

]

+,

"patch": {
"agent": {

"patchAgentName": "Default Patch Agent - dcl"

}

b

"reflector": {
"name": "Default Reflector - dcl",
"config": {

"multicastInterfaceName'": "___MULTICAST_INTERFACE_NAME___

}
}
}
1,
"jceCassandra": {
"values": {
"multi-casskop": {
"k8s": {

Instant Connect Software, LLC

41

Geo-redundancy

"local": "dc1",
"remote": [
lldC2|l
]
}
}
}
1,
"instantConnectEnterprise": {
"spec": {
"timeout": 10800
b
"values": {
"config": {
"ingress": {
"enabled": true,
"hosts'": [
"___DC1_FQDN___"
]
by
"swaggerUI": {
"enabled": false,
"json": {
"merge.json": {
"servers": [
{
"description": "public rest endpoint",
"url": "https://___DC1_FQDN___/instant-connect"
}
1
+
I
"mergeJson": true
I
"include": {
"multiCassKop": true
I
"cassandra": {
"nCassandraNodes": 1,
"replicationFactor": 1
I
"multidatacenter": {
"enabled": true,

"currentDC": "dcl",
"des": [
{
"name": "dcl"
1
{
"name'": "dc2"
}

Instant Connect Software, LLC

42

Geo-redundancy

]
}
b
"devInclude": {
"IPPhoneBridge": true
1,
"env'": {
"arcusComponents": {
"ipphone-bridge": {
"redirect.base.url": "https://___DC1_FQDN___/ipphone",
"static.resource.server.url":
"https://___DC1_FQDN___/1ipphone"
}
}
}
}
1,
"sonobuoy": {
"enabled": false
}
}
}

8 Appendix B: Full Sample seed_dc2.json

The following is a full sample seed/seed_dc2.json. Underscored ’___’ values in the sample be-
low must be replaced with the actual values provided during ICE installation. Please review the ICE
Server Administration Guide for allowed values.

{
"charts": {
"iceMinio": {
"enabled": true,
"values": {
"multidatacenter": {
"enabled": true,
"currentDC": "dc2",
"remoteDC": "dcl"
}
+
b
"rallypoint": {
"values": {
"rallypoint": {
llnamell: |ldC2ll’
"peerMeshes": [
"jce-rallypoint-discovery-dcl"

]

Instant Connect Software, LLC 43

Geo-redundancy

1,
"patch": {
"agent": {
"patchAgentName": "Default Patch Agent - dc2"
}
1,
"reflector": {
"name": "Default Reflector - dc2",
"config": {
"multicastInterfaceName": "___MULTICAST_INTERFACE_NAME___"
}
}
}
1,
"jceMonitoring": {
"enabled": false
1,
"jceCassandra": {
"values": {
"multi-casskop": {
"enabled": false
}
}
b
"instantConnectEnterprise": {
"enabled": false
}
}
}

9 Appendix C: Full Sample ice_dc2.json

The following is a full sample ice/ice_dc2.json that may be used for installation with cluster
FQDN name (for enabling SSL/TLS access) and Geo redundancy. Underscored’___’ values in the sam-

ple below must be replaced with the actual values provided during ICE installation. Please review the
ICE Server Administration Guide for allowed values.

{
"charts": {
"JceMinio": {
"enabled": true,
"values": {
"multidatacenter": {
"enabled": true,
"currentDC": "dc2",
"remoteDC": "dcl1"

s

Instant Connect Software, LLC 44

Geo-redundancy

"config": {
"ingress": {
"hosts'": [
" _DC2_FQDN___"
]
}
}

}

I

"jcelLogging": {
"enabled": false

b

"jceIngress": {
"enabled": true,
"values": {

"host": "___DC2_FQDN___"
+

3,

"jceMonitoring": {
"enabled": true,
"values": {

"grafana": {
"grafana.ini": {
"server": {

"domain": "___DC2_FQDN___"

1,

"smtp": {
"enabled": true,
"from_address": "___FULL_EMAIL_ADDRESS___",
"from_name": "___EMAIL_USER_COMMON_NAME___",
"host": "___SMTP_SERVER___:___ SMTP_SERVER_PORT___
"user": "apikey",
"password": "___EMAIL_API_KEY___",
"skip_verify": true

}

b

"ingress": {
"enabled": true,
"hosts": [

"___DC2_FQDN___"
]
}
1,
"prometheus": {
"server": {

"retention": "7d"
}
1,
"loki™: {
"config": {

"table_manager": {

)

Instant Connect Software, LLC

45

Geo-redundancy

"retention_deletes_enabled": true,
"retention_period": "7d"
}
}
}
+
b
"rallypoint": {
"values": {
"rallypoint": {
"name": "dc2",
"peerMeshes": [
"jce-rallypoint-discovery-dcl"
]
b
"patch": {
"agent": {
"patchAgentName": "Default Patch Agent - dc2"
}
b
"reflector": {
"name": "Default Reflector - dc2",
"config": {

"multicastInterfaceName": "___MULTICAST_INTERFACE_NAME___

}
}
+
1,
"iceCassandra": {
"values": {
"multi-casskop": {
"enabled": false
}
}
b
"instantConnectEnterprise": {
"spec": {
"timeout": 10800
I
"values": {
"config": {
"ingress": {
"enabled": true,
"hosts'": [
" __DC2_FQDN___"
]
1,
"swaggerUI": {
"enabled": false,
"json": {
"merge.json": {

Instant Connect Software, LLC

Geo-redundancy

"servers": [

{
"description": "public rest endpoint",
"url": "https://___DC2_FQDN___/instant-connect"
}
]
}
I
"mergeJson": true

I

"include": {
"multiCassKop": false

I

"cassandra'": {
"nCassandraNodes": 1,
"replicationFactor": 1

b

"multidatacenter": {
"enabled": true,

"currentDC": "dc2",
"des": [
{
"name": "dcl"
I
{
"name": "dc2"
}
]
}
b

"devInclude": {
"IPPhoneBridge": true

1,

"env": {
"arcusComponents": {

"ipphone-bridge": {
"redirect.base.url": "https://___DC2_FQDN___/ipphone",
"static.resource.server.url":

"https://___DC2_FQDN___/ipphone"

}

}
}
}
1,
"sonobuoy": {
"enabled": false
}
}
}

Instant Connect Software, LLC

47

	Document History
	Tools
	Prerequisites
	Connectivity Requirements
	Kubernetes Setup Requirements
	Planning
	Cluster level
	Node Level
	Kubernetes Cluster Setup

	Installation
	Overview
	Kilo/WireGuard
	Overview
	Install
	Check install
	Add Peers
	Check Peers

	CoreDNS
	Overview
	Install
	Check CoreDNS

	Installing ICE
	Overview
	Install ICE in initial cluster
	Seed ICE Installation on all other clusters
	Resume Initial Installation
	Check Initial Instant Connect Enterprise Installation
	Override random initial password
	Complete ICE installation on all other clusters
	Check ICE installation on all clusters

	Data re-synchronization after a Data Center outage
	Re-sychronize Kafka
	Check MirrorMaker2 status

	Re-sychronize Cassandra database
	Re-sychronize local Elasticsearch data
	MinIO Sync Failure

	Upgrading ICE Server
	Appendix A: Full Sample ice_dc1.json
	Appendix B: Full Sample seed_dc2.json
	Appendix C: Full Sample ice_dc2.json

