ICE Security Guide

iINstantc-)nnect

ICE Security Guide

Product guide for prerelease

Copyright © 2024, Instant Connect Software, LLC. All rights reserved.
Document version 1841, produced on Friday, September 06, 2024.

main 90adc8bf40040649230176bbdd465f6261a2d8e0

Instant Connect Software, LLC

ICE Security Guide

ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE
ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS
MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF
THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. STA GROUP DISCLAIMS ALL WAR-
RANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

INNO EVENT SHALL INSTANT CONNECT LLC ORITS SUPPLIERS BE LIABLE FORANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR
LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF
STA GROUP ORITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Trademarks mentioned in this document are the properties of their respective owners.

Instant Connect Software, LLC 2

ICE Security Guide

Contents
1 Introduction 4
2 Technology, Regulatory Items, and Disclaimer 4
2.1 Technology e 4
2.2 Regulatory e 4
2.3 Disclaimer. e e e 5
3 Encryption 5
3.1 SymmetricEncryption e e e e e 5
3.2 AsymmetricEncryption e e 5
3.3 SymmetricKey Derivation e 5
3.3.1 Baseline Key Materialisbinary! 6
3.4 BaselineKeyMaterial Transport e
3.5 TrafficEncryption. e e
4 X.509 Certificates 7
4.1 CertificateStorage e 7
4.1.1 Defaulting Using Certificate StoreTags 8
4.1.2 Certificate Store Loading & Distribution. 10
5 Data Signing and Message Authentication 10
6 Deploying Self-Signed Certificates 10
6.1 Self-sign certificates for ICE Desktop login 10
7 Self-sign certificates for ICE Mobile login 11
7.1 Convert.crtfileto.pemfile 11
7.2 Installtheroot CA certificatetotheOS 12
7.3 Load the root CA certificate to the ICE Mobile app’s document directory 12
T4 TLSCerts . . . o o e e e e 13
7.5 TelephonyCerts i i e e e e e 14
7.6 Geo-RedundancyCerts o i e e e 15
7.6.1 TLSCerts(DC2) o i e e e e e 15
7.7 Vector configurationforICEServer e 15
Instant Connect Software, LLC 3

ICE Security Guide

1 Introduction

This document covers security in Instant Connect Enterprise (ICE) and the Engage engine.

2 Technology, Regulatory Items, and Disclaimer

This section identifies the security technology used by Instant Connect Enterprise and the Engage
engine. It also covers the regulatory restrictions and disclaimers relevant to ICE.

2.1 Technology

All components use the WolfSSL library, resulting in a lightweight, high-performance implementa-
tion.

The WolfSSL library is statically linked with ICE software. It is not dependent on the security features
offered by any particular OS or hardware platform. The WolfSSL library uses the same crypto library
across all platforms, providing ICE with a single, consistent, interoperable platform for security. And,
because the WolfSSL library is independent of the operating system, regulatory considerations requir-
ing inspection do not need to evaluate any particular individual platform.

[INOTE]

ICE code is FIPS-compliant. ICE does not build WolfSSL with the FIPS140-2 “canister” that pro-
vides a FIPS-validated crypto layer.

2.2 Regulatory

Export and import of encryption technologies is a sensitive topic and varies in complexity across a
range of use-cases, source of export, and target of import. Instant Connect does not sell or license
its technologies to end-customers. Instant Connect licenses to OEM partners that incorporate Instant
Connect technologies into their products, which are then sold/licensed to end-users. As a result, In-
stant Connect does not provide details of compliance with export or import regulations. It is the
responsibility of OEM partners to seek the necessary approvals or exclusions on a case-by-case or
product-by-product basis.

Instant Connect is open to inspection of its source code by authorized organizations, agencies, and
individuals for compliance purposes. Requests are taken on a case-by-case basis. Please contact su
pport@rallytac.com for assistance in this regard.

Instant Connect Software, LLC 4

https://www.wolfssl.com/
mailto:support@rallytac.com
mailto:support@rallytac.com

ICE Security Guide

2.3 Disclaimer

Please remember that export/import of and/or use of strong cryptography software, providing cryp-
tography hooks, or even just communicating technical details about cryptography software, is illegal
in some parts of the world. When importing Instant Connect software to your country, re-distributing
it from there, or even just emailing technical suggestions or software sources to Instant Connect or
others: You are strongly advised to pay close attention to any laws or regulations which apply
to you.

Rally Tactical Systems, Inc. is not liable for any violations made by users of its software.

3 Encryption

This section describes how the Engage engine employs different encryption algorithms.

3.1 Symmetric Encryption

All symmetric encryption in Engage is performed using the AES (Advanced Encryption Standard) algo-
rithm with 256-bit keys operating in CBC (Cipher Block Chaining) mode.

3.2 Asymmetric Encryption

Asymmetric encryption is used in Engage during the TLS encryption setup phase between a client
application and a Rallypoint. The algorithm used in this phase uses a cipher that the Rallypoint and
client agree upon based on the X.509 certificates they present to each during the handshake.

3.3 Symmetric Key Derivation

Encryption keys are never stored or transmitted by Engage. Keys are algorithmically derived using the
NIST-approved PBKDF2 algorithm. Engage takes the incoming passphrase/password/PIN (we refer to
this as “Baseline Key Material” or simply “BKM”) provided by the user application, then combines
it with a 128-bit salt, and then performs 15,000 iterations of the algorithm (NIST recommends 10,000
iterations) to arrive at the derived, 256-bit, key.

Instant Connect Software, LLC 5

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_(CBC)
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/PBKDF2

ICE Security Guide

3.3.1 Baseline Key Material is binary!

Engage is not limited to only printable characters for baseline key material. Rather, the software sup-
ports the full 256-bit range of binary data for BKM. For example, many encryption systems utilize pass-
words, passphrases, or PIN codes. This generally means that they need to be human-readable in some
form and, therefore, printable. As Engage is not interacting directly with humans in this regard, the
application using the Engage Engine can use any method appropriate to its use-case to obtain BKM
from a user or from non-human entities such as provisioning systems.

3.4 Baseline Key Material Transport

Transportation of BKM is the domain of the application using the Engage Engine. For example, in im-
plementations where human-processable data (e.g., passwords, passphrases, numbers) are involved,
thatinformation can be conveyed through out-of-band means (e.g., one-on-one interactions between
team members, secured emails). Some implementations choose to use more exotic transport meth-
ods, e.g., encrypted QR codes, where the QR code itself is protected by a password known only to
those using the QR code.

3.5 Traffic Encryption

Channels (or “groups”, as we refer to them) are encrypted using AES256-CBC, as described above.
When the traffic is conveyed over UDP, the entire UDP payload is encrypted. This means that an at-
tacker has no reliable way to know if the traffic is a known format (such as RTP) or a custom format
implemented by the Engage Engine or the application using the Engine (in the case of “raw” group
types). Also, even if the attacker assumes correctly that the payload is a standards-based format (such
as RTP), since even the RTP headers are encrypted and the entire payload was preceded by an ini-
tialization vector produced uniquely for each packet; the task of cryptanalysis is exponentially more
computationally expensive.

When traffic is conveyed over TCP, which is the case for client connections to Rallypoints and peer
connections between Rallypoints operating in a mesh, that traffic is secured with TLS 1.3. This TLS-
provided encryption is in addition to whatever encryption is already present for a group. Therefore,
if the traffic for a group is encrypted, Engage will always encrypt it and, when that traffic then flows
through TLS, the traffic is encrypted once again.

Engage generally views all traffic as packets conveyed over UDP. Even if the packets are conveyed over
TCP, they are still treated by Engage as UDP (atomically). Essentially, Engage views TLS connections as
secured tunnels (not unlike VPN connections) over which regular UDP is conveyed as a TCP stream.

Instant Connect Software, LLC 6

https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security

ICE Security Guide

4 X.509 Certificates

Engage uses X.509 certificates extensively for purposes of encryption, authentication, verification,
and data creation. At minimum, an Engage Engine has a default certificate that it uses for all these
purposes, but it is possible to use individual certificates for specialized purposes, e.g., connections to
different Rallypoints (both within and external to an enterprise) can use different certificates.

4.1 Certificate Storage

When configuration (in the form of JSON) is provided by an application to the Engage Engine, the vari-
ous certificates to be used may be passed directly in the certificate as PEM-encoded text. However, this
certificate data often includes the private key with the certificate. Applications, or the platforms they
execute on, may not always meet government or enterprise stringent data protection guidelines. To
deal with this, Engage offers a set of certificate management APIs that secure certificates and private
keys in an encrypted storage container known as a certificate store. This certificate store is typically
physically implemented as an operating system file, which may be stored securely by the underlying
operating system. That OS-provided secure storage notwithstanding, Engage encrypts this file follow-
ing a sophisticated security algorithm where the encryption key (AES256-CBC) for the file is comprised
of three components:

« An application-provided (binary) password/passphrase/PIN
+ A512-bit algorithmically-generated salt contained within the Engage Engine
« A 128-bit initialization vector embedded into the certificate store itself

Also, the initialization vector changes every time the file is modified by Engage, effectively creating a
dynamic keying material baseline upon every store modification operation.

To aid in protecting against unauthorized certificate store modification, Engage embeds a SHA-256
digest in the certificate store and also validates each element in the store every time that store is
opened. Therefore, for an adversary to obtain access to the content of the store - or to modify it in
any way, they would have to know the application-defined passphrase, the algorithmically-generated
Engage-provided salt, the IV inside the certificate store, and (finally) understand the method in which
the encryption key is generated.

Each certificate (and its private key if applicable), is de-referenced with an application-provided iden-
tifier whichis then used within the JSON configuration to “point” to the certificate. Forexample, JSON
containing the actual PEM certificate could be represented as:

"security":{

Instant Connect Software, LLC 7

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

ICE Security Guide

"certificate":"----- BEGIN CERTIFICATE----- \
NMIICLDCCAdKgAWIBAgIBADAKBggqhkjOPQQDAjBIMQswCQYDVQQGEWICRTEPMAGG\n
n
o0 Uy
"certificateKey":"---—- BEGIN EC PARAMETERS----- \nBgUrgQQAIw==\n---—- END
EC PARAMETERS----- \n----- BEGIN EC PRIVATE KEY---—- \NMIHbAgEBBEGXac

}

Or, a certificate store can be used that contains a certificate (and private key) identified with an
application-defined value, such as “PrimaryX509”. In this case, the JSON would look as follows:
"security":{
"certificate":"@certstore://PrimaryX509",

"certificateKey":"@certstore://PrimaryX509"
}

In this case, Engage will extract the certificate and key for “PrimaryX509” from the active certificate
store and insert it directly into its internal configuration without the certificate or key ever being ex-
posed - even to the application itself.

4.1.1 Defaulting Using Certificate Store Tags

There is another way in which Engage can be instructed to use certificates from the certificate store
without specifying anythingin either the Engine’s policy or the group configuration, i.e., away to forgo
the security JSON element altogether (as well as certificate-related details in Rallypoint configura-
tions). This is done through tagging of elements in the certificate store.

Tagging is simply the process of attaching a well-known identifier (or set of identifiers) to a certificate
element in the certificate store and then forcing Engage to retrieve elements from the active store
using these well-known identifiers. If you leave a security element empty, Engage will look in the
active certificate store for the first element it finds with the appropriate tag and use it’s contents.

For example: Let’s say we have a security element which is blank (or simply not in the configuration
at all) as below:
"security":{

"certificate":"",
"certificateKey":""

}

When Engage encounters this situation, it will look in the active certificate store for the first element
that hasthe tag enginedefault. Ifit finds that element, it usesit, but the onus is on the certificate
store to have the elements correctly tagged. If they’re not present, the above will result in Engage not
finding any security-related information.

Instant Connect Software, LLC 8

ICE Security Guide

There are two tags that the Engage Engine will look for:

+ —enginedefault: Acertificate, including private key, used for general X.509 operations.
« —cadefault: ACA certificate.

On a Rallypoint, the same logic applies, but with a slightly different name:

« —rpdefault: A certificate, including private key, used for general X.509 operations.
« —cadefault: ACA certificate.

With a security configuration as shown in the example above, the certificate store needs it’s elements
tagged and Engage instructed to use that store. For example, if we use ecstoo'l (described below)
to configure a certificate store with the correct tagging, we’d have something like this:

./ecstool all-rts-certs.certstore list

Engage Certstore Tool version 1.191.9028 [RELEASE] for darwin_x64
Copyright (c) 2019 Rally Tactical Systems, Inc.

Build time: Nov 25 2020 @ 14:54:18

ideeeeieieeeenee..: {415ffe0l-efe5-4592-b984-c839b8fhb074e}
fileName..........: all-rts-certs.certstore
VEersion...eeeeeeea.: 1

3 CERTIFICATES
rtsCA (CERTIFICATE ONLY) [-cadefault]
rtsFactoryDefaultRpSrv (CERTIFICATE + PRIVATE KEY) [-rpdefault]
rtsFactoryDefaultEngage (CERTIFICATE + PRIVATE KEY) [-enginedefault]

ICE can use this certificate store for Engage Engines, as well as Rallypoints, because, in this case, the
store contains all the certificates.

+ Notice how rtsCA is tagged as —cadefau'lt, telling Engage and Rallypoints that rtsCA is
the default CA certificate to use.

« rtsFactoryDefaultRpSrv is tagged as -rpdefault, which tells Rallypoints using the
certificate store that rtsFactoryDefaultRpSrv is the default certificate to use.

« Finally, rtsFactoryDefaultEngage is tagged as —enginedefault, which tells Engage
Enginesto use rtsFactoryDefaultEngage as the default certificate.

This capability is purposefully simple in nature and designed for situations where using defaults is
sufficient for normal operation. For more sophisticated environments, such as using multiple and/or
different certificates, CAs, and so forth; defaulting security is not sufficient and you will need to specify
security-related information.

Instant Connect Software, LLC 9

ICE Security Guide

4.1.2 Certificate Store Loading & Distribution

Depending on the use-case of the application using the Engage Engine, you can choose to implement
importing of certificates from within the application, or to use the ecstool command-line utility, which
uses the Engage Engine to manage certificate store files. Those files are then distributed to end-user
devices, servers, etc using the customer’s preferred distribution mechanism, e.g., an MDM, ActiveDi-
rectory, LDAP, dedicated servers, clouds, file copying, shared drive access. Even public means of
distribution, e.g., email, social media, public drives, may be used, because the certificate store has
self-contained security accessible only to Engage Engines where the above-mentioned constraints
are satisfied.

5 Data Signing and Message Authentication

Signing and verification of messages and other secured data elements in Engage is driven by certifi-
cates, as well. Engage uses message-signing for an additional level of authentication between clients
and Rallypoints, as well as signing of timeline events for anti-tampering purposes such as chain-of-
evidence preservation. In both cases, Engages uses the Elliptic Curve Digital Signature Algorithm (ED-
CSA) to both sign and verify signed data.

In the case of TLS connections, Engage implements additional guards against attacks by using a
message-signing strategy that incorporates keying material negotiated by the session’s TLS hand-
shake, and which is unique to that session. This is done in compliance with RFC 5705 whereby a
portion of the session’s unique key material is incorporated into session management messages and
then signed with ECDSA.

For timeline signing, each timeline file (stored as a JSON or RIFF file depending on content) incorpo-
rates the public portion of the signing certificate in PEM format along with the ECDSA signature for
the content based on the certificate public/private key pair.

6 Deploying Self-Signed Certificates

This section provides instructions for using self-signed certificates for ICE Desktop and Mobile users.

6.1 Self-sign certificates for ICE Desktop login

The ICE Desktop client supports the use of self-signed certificates by applying to the security context a
root CA certificate file that was installed to the Windows certificate store. The root CA certificate must
be in the .crt format.

Instant Connect Software, LLC 10

https://github.com/rallytac/pub/wiki/Using-ecstool
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://tools.ietf.org/html/rfc5705
https://en.wikipedia.org/wiki/Resource_Interchange_File_Format

ICE Security Guide

Note: Other common certificate formats (e.g., .cer) are not supported. The entire certificate trust
chain must be presentin the root CAfile, so, depending on how the server identity certificate was
setup, one or more intermediate CA certificates may also be required, in addition to the root CA

certificate.

1. Download the root CA certificate file.

2. Right-click on the file and select ‘Install Certificates.

3. Select ‘Open’.

4. Select ‘Install for current users’.

5. Place the file in the ‘Trusted Root Certification Authorities’ store.

6. Navigate to the certificate store: Certificates > Trusted Root Certification

Authorities > Certificates.
Verify the certificate file is there.

®© N

. Launch ICE Desktop. Log out, if necessary, then login.

When opened, the desktop client now queries the installed root CA certificates (system and user) and
applies them to the security context. If the root CA certificate and all intermediates are present, the
client will successfully connect to the ICE Server.

7 Self-sign certificates for ICE Mobile login

The ICE Mobile app (i0S, Android) supports the use of self-sign certificates by applying to the security
context a root CA certificate file that was installed to the mobile device’s OS or saved to mobile app’s
document directory. The root CA certificate must be in a supported format.

« i0S: .pem
« Android: .crt, .pem

Note: Other common certificate formats (e.g., .cer) are not supported. The entire certificate trust
chain must be present in the root CAfile, so, depending on how the server identity certificate was
setup, one or more intermediate CA certificates may also be required, in addition to the root CA
certificate.

7.1 Convert .crt file to .pem file

Run the following command to convert a .crt file to a .pem file:

openssl x509 -in root.crt -out root.pem

Instant Connect Software, LLC 11

ICE Security Guide

7.2 Install the root CA certificate to the OS

The objective of this process is to install the root CA certificate to the device’s OS. The examples used
below are for reference and based on an Apple iPhone running iOS 14 and a Samsung phone running
Android 10, respectively. Your device menus and settings may differ significantly, but the objective
remains the same.

Forios:

1. Save the root CA certificate file to the native Files app (e.g., from an email attachment): Files
> On my 1iPhone.

2. From the ‘Files’ app, select the file so a ‘Profile downloaded’ message displays.

3. Toinstall the certificate, open the native ‘Settings’ app and select ‘Profile downloaded”.

4. Toenable the certificate, navigateto Settings > General > About > Certificate
Trust Settings.

5. Launch ICE Mobile. Log out, if necessary, then log in.

For Android:

1. Save the root CA certificate file to the device’s storage.

2. GotoSettings > Biometrics and security > Other security settings
> Install from device storage.

3. Select thefile to install it.

4. Goto Settings > Biometrics and security > Other security settings
> View security certificates toconfirm the certificate is there.

5. Launch ICE Mobile. Log out, if necessary, then log in.

When opened, the app now queries the device’s installed root CA certificates (system and user) and
applies them to the security context. If the root CA certificate and all intermediates are present, the
app will successfully connect to the ICE Server.

7.3 Load the root CA certificate to the ICE Mobile app’s document directory

The objective of this process is to save the root CA certificate to the ICE Mobile app’s document direc-
tory. The app references that file to support self-sign certification. The app will not find the root CA
certificate unless the .pem file is placed in the correct document directory. The examples used below
areforreference and based on an AppleiPhone runningiOS 14 and a Samsung phone running Android
10, respectively. Your device menus and settings may differ significantly, but the objective remains
the same.

Instant Connect Software, LLC 12

ICE Security Guide

1. Savethe root CA certificate file to the ICE Mobile app’s document directory. You can confirm the
directory path is correct by looking for the presence of a README.txt document.

For iOS: The directoryisat: Files > On my iPhone > ICE Mobile.
Save the file to the native ‘Files’ app, e.g., from an email attachment.

Open the ‘Files’ app.
Long press on the root CA certificate file.

el A

From the resulting menu, select ‘ICE Mobile’, then select ‘Copy’.

For Android: The directory is typically at: Internal storage > Android > data >
com.dillonkane.ice.flutter > files.

2. Open the ICE Mobile app. Log out, if necessary, then log in.

When opened, the app now checks that file directory and applies the root CA certificates located there
to the security context. If the root CA certificate and allintermediates are present, the app will success-
fully connect to the ICE Server.

7.4 TLS Certs

Note: Certificates must be valid for more than 60 days, at least. Open ‘Status’ > ‘Client TLS Cer-

tificates’ to check the validity of loaded certificates.

Note: If a certificate contains an IP address prefaced by http or https, then do NOT list that IP
address in the ‘Cluster Ingress Hostname’ field on the ‘Server’ screen.

+ Enable TLS = If enabled, the following fields appear:

- Site Certificate Private Key = Enter the private (host) key. X.509 certificate in PEM format.

- Site Certificate Chain = Enter the public key. X.509 certificate in PEM format. The certifi-
cate chain is as follows: server certificate > intermediate certificate(s) (if any) > certificate
authority (CA). When using the ‘File upload’ option, the certificate chain must be uploaded
as a single file.

Instant Connect Software, LLC 13

ICE Security Guide

Note: After entering both the private and public keys, an ‘Adding FQDN: [XXX]" notifi-
cation displays. Open the ‘Notifications’ screen and review the ‘Adding FQDN’ line of
that notification to verify the domain is correct.

Info 1:30:31 pm (192.168.180.20)

e mnnnins FEL i FFSEFTIESATELD

Adding FIJ-I.'.I.H:

‘TI:I'_"F“'Sir:lEI PEM block [[.‘-EHTHEATI:-'I

Note: The ICE Desktop web client (enabled on the ‘Server’ screen) requires certifi-
cates be entered here, otherwise, navigating to the web client address results in the
following notification: ’Instant Connect is not available in this browser context. Con-
tact your system administrator for more information.

+ Specify LDAP Server Certificate = If enabled, the following field appears:
- LDAP Certificate = Enter the LDAP server’s identity certificate in PEM format.

« Apply = Check the ‘Status’ dropdown and wait for ‘Node Status’ to turn green before pro-
ceeding to the next screen.

For air gap: Also wait for ‘Air-gapped Extraction Status’ to turn green before proceeding to
the next screen.

Note: If you advance to the next screen before ‘Node Status’ turns green, an error message
may display. If this occurs, wait for ‘Node Status’ to turn green, and the error will resolve
itself.

7.5 Telephony Certs

« Install Telephony Server = Do NOT enable unless this feature is included in your ICE product
license. Ifenabled, an ‘Assigned node XXX for telephony’ notification displays, also the following
fields appear:

Instant Connect Software, LLC 14

ICE Security Guide

- Enable TLS with Telephony = If enabled, the following fields appear:

* Telephony Certificate Private Key = Required.
* Telephony Certificate Chain = Required.

+ Assigned Telephony Node =Prepopulated with the ICE host name, whichis pulled from the value
entered in the ‘Node Name’ field on the ‘Network’ screen.
« SIP Ports Specification = Only displays if the ‘Advanced Questions’ tool is enabled.

SIP TCP Port
SIP UDP Port
SIP TLS Port
SIP TCP6 Port
SIP UDP6 Port
SIP TLS6 Port

« Apply = Select to apply these values and proceed to the next screen.

7.6 Geo-Redundancy Certs
7.6.1 TLS Certs (DC2)
« Any certificates entered for DC1 still display here. If DC2 has different certificates, then enter

those certificates instead.

« Verify the configurations on the screen are correct, then check the ‘Status’ dropdown and wait
for ‘Node Status’ to turn green before proceeding to the next screen.

Note: If you advance to the next screen before ‘Node Status’ turns green, an error message
may display. If this occurs, wait for ‘Node Status’ to turn green, and the error will resolve
itself.

7.7 Vector configuration for ICE Server

1. Add asectionin /etc/vector/vector.toml:

In this example, we are collecting all kubernetes logs
from ICE OS VM 192.168.0.198

"sources.K8S_CLUSTER" : User-friendly name of ICE Server

H H H H HF HF H

"sinks.DATA_SOURCE_NAME" : User-friendly name of data source
output

Instant Connect Software, LLC 15

ICE Security Guide

"inputs" : It should point to "sources.K8S_CLUSTER

"path" : Location of sink's output file

[sources.ice_192_168_0_198_vector]
type = '"vector"
address = "0.0.0.0:9000"

[sinks.ice_192_168_0_198_vector_out]

type = "file"

inputs = ["ice_192_168_0_198_vector"]

path = "/var/log/vector/k8s/ice_192_168_0_198.log"
encoding.codec = "raw_message"

2. ForTLS:

1. Add the following in the source section:

tls.enabled = true

tls.ca_file = "/etc/vector/tls/tls.vector.ca_file"
tls.crt_file = "/etc/vector/tls/tls.vector.crt_file"
tls.key_file = "/etc/vector/tls/tls.vector.key_file"

2. tls.ca_f1leshould pointtoa.PEM file containing the root certificate and the interme-
diate certificate, if applicable.

3. tls.crt_f1ileshould pointto a.PEM file containing the Vector server certificate.
4. tls.key_f1ileshould pointto a private key file corresponding to tls.crt_f1ile.
3. Start/restart Vector:

sudo systemctl restart vector

4. Youshouldsee ICE Server logs streamingto: /var/log/vector/k8s/ice_192_168_0_198
.log

Instant Connect Software, LLC 16

	Introduction
	Technology, Regulatory Items, and Disclaimer
	Technology
	Regulatory
	Disclaimer

	Encryption
	Symmetric Encryption
	Asymmetric Encryption
	Symmetric Key Derivation
	Baseline Key Material is binary!

	Baseline Key Material Transport
	Traffic Encryption

	X.509 Certificates
	Certificate Storage
	Defaulting Using Certificate Store Tags
	Certificate Store Loading & Distribution

	Data Signing and Message Authentication
	Deploying Self-Signed Certificates
	Self-sign certificates for ICE Desktop login

	Self-sign certificates for ICE Mobile login
	Convert .crt file to .pem file
	Install the root CA certificate to the OS
	Load the root CA certificate to the ICE Mobile app’s document directory
	TLS Certs
	Telephony Certs
	Geo-Redundancy Certs
	TLS Certs (DC2)

	Vector configuration for ICE Server

