ICE Technical Operations

iINstantc-)nnect

ICE Technical Operations

Product guide for prerelease

Copyright © 2024, Instant Connect Software, LLC. All rights reserved.
Document version 1841, produced on Friday, September 06, 2024.

main 90adc8bf40040649230176bbdd465f6261a2d8e0

Instant Connect Software, LLC

ICE Technical Operations

ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE
ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS
MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF
THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. STA GROUP DISCLAIMS ALL WAR-
RANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

INNO EVENT SHALL INSTANT CONNECT LLC ORITS SUPPLIERS BE LIABLE FORANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR
LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF
STA GROUP ORITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Trademarks mentioned in this document are the properties of their respective owners.

Instant Connect Software, LLC 2

ICE Technical Operations

Contents

1 Document History

2 Introduction

2.1 ICEsystemcomponents e e e e e e e e e
2.2 Third party Kubernetescomponents
2.3 Architecturaldesigngoals e
2.3.1 Scalable, distributed mediaprocessing
2.3.2 Networksimplicity e
2.3.3 Platformubiquityandlongevity o oL
2.34 Flexibilityinscale e
2.4 Simplified systemdiagram
3 ICEOS
3.1 LinuxKit . . . e e e e e e e
3.2 Kubernetes e
3.3 Benefitsof Kubernetes L

3.3.1 Drawbacks of Kubernetes

3.4 Kubernetesdeploymentmodels
3.4.1 On-premisesorcloudhosted
3.4.2 Single-nodecluster (ICEQOS) i i i
343 Multi-nodecluster
344 Lossofadatacenter
3.45 Choosingadeploymentmodel
34.6 IPportsusedbythesystem

3.5 Clusterloadbalancing e

3.6 Geographicredundancy
3.6.1 Single cluster that spans two physicaldatacenters
3.6.2 Replicate ICE data between independentclusters
3.6.3 Clusterpartitioning
3.6.4 Problems associated with long-lasting partitions

4 ICE Server

4.1 ClientconnectionstoICEServer i e
4.1.1 Establishingtheconnection
4.1.2 Determination of online/offlineuserpresence
4.1.3 Determinationofauser’slocation

4.1.4 Client reconnect behavior

10
11
11
11
12
12
12

13
14
15
15
16
16
17
17
17
18
19
20
22
22
23
23
24
26

26
27
27
28
28
29

Instant Connect Software, LLC

ICE Technical Operations

4.2 Special considerations for ICE DesktopforWeb 32
4.2.1 Applicationlimitations L. L 32

4.2.2 Browserlimitations 33

4.2.3 Connectionlimitations e 34

424 Certificateconcerns 34

4.3 ICEServerarchitecture 36
4.4 MeESSAZES e e e e e e e e e e e e e e 38
441 SErVICES . . . v v it e e e e e e e e 39

442 Models e 39

4.5 Tactical and enterprise modesofoperation 40
45.1 Sharinguser presenceintacticalmode o oo 42

4.6 Mission file format specification L 42
4.6.1 Missionobject e 42

4.6.2 Serialization specification o 49

4.6.3 Automatic mission and group ID generation 50

5 ICE Media Engine 51
5.1 Encryption e e e e e e e 51
5.1.1 SymmetricEncryption L e 51

5.1.2 AsymmetricEncryption 51

5.1.3 SymmetricKey Derivation 51

514 TrafficEncryption e 52

5.2 Required network qualityofservice 53
5.3 Network bandwidth considerations L 54
54 Packetstreams e 55
54.1 Multicasting 55

5.4.2 UnicastingwithRallypoints 55

5.5 Bandwidthcalculations 56
5.,5.1 PacketStructure 56

55.2 AVariety Of CODECS o i i i i e e e e e e e e e 56

5,53 Packetoverhead 57

5.5.4 Packetframing 58

5,5,5 ComparingUDPandTCP 60

5.6 Bandwidth utilizationtables L 60
5.6.1 Unicast (Rallypoint) bandwidth utilization 60

5.6.2 Multicast bandwidth utilization o o000 63

5.7 Rallypointmeshing e 65

Instant Connect Software, LLC 4

ICE Technical Operations

6 Satellite server components 66
6.1 Satellitedeploymentmodels 67
6.2 Leaderelection e 68

6.2.1 Howamemberserveriselectedleader 69
6.2.2 QUOIUM e e e e e e e e e e e e e e e e e e e 71
6.2.3 Election priority and out-of-service L. 73
6.2.4 Interpretingelectionresults L o o 73
6.2.5 Specialconsiderations e 76
6.3 ICEAgent e e e e 7
6.4 ICERallypoint e e 77
6.5 ICEGateway e e e e e e 7
6.5.1 Interfacewithacallmanager 78
6.5.2 CallsetupwithICEclients, 78
6.6 ICEPatchServer e e e 78
6.6.1 Patchlimitations 79
6.6.2 Preventingaudioloops 79
6.6.3 Audiobridging e 80
6.6.4 External patchserverdeployment 81
6.7 |ICEStaticReflector e 81
6.7.1 Externalreflectordeployment 83

Instant Connect Software, LLC 5

ICE Technical Operations

List of Figures
1 Simplified, single-node deploymentdiagram 13
2 ICE Server system componentdiagram 38
3 Clear(unencrypted) UDPpacket e 56
4 Secure (encrypted) UDPpacket e 56
5 Rallypoint mesh using a multicastbackbone 65
6 Rallypoint mesh without a multicastbackbone 66
7 Radio integration withmulticast 82
8 Radio and telephony interoperability with static reflectors 83

Instant Connect Software, LLC 6

ICE Technical Operations

List of Tables
2 Instant Connect Enterprise system components 9
3 Third party Kubernetescomponents 10
4 Hosting model benefitsanddrawbacks 19
5 Cluster type benefitsanddrawbacks, 20
8 Clientreconnectstrategies 29
9 ICE Server system subcomponents 36
10 Tactical versus enterprise featuresupport L. 41
11 Mission file format, mission object definition 42
12 Mission file format, meta object definition 43
13 Mission file format, group object definitiono L. 44
14 Mission file format, address object definition 46
15 Mission file format, transmit audio object definition 47
16 Mission file format, presence object definition 48
17 Mission file format, Rallypoint object definition 48
18 Mission file format, host object definition 49
19 Network quality of serviceparameters 53
20 Bandwidth (Kbps) for unencrypted unicast TCP per framing size(ms) 60
21 Bandwidth (Kbps) for encrypted unicast TCP per framingsize(ms) 61
22 Supported Radio InteroperabilityCodecs, 62
23 Bandwidth (Kbps) for unencrypted multicast UDP per framing size(ms) 63
24 Bandwidth (Kbps) for encrypted multicast UDP per framing size(ms) 64
25 Satelliteservercomponents L e 67

Instant Connect Software, LLC 7

ICE Technical Operations

1 Document History

Product

Publication Date Release Notes

May 29, 2024 3.5.1 No updates.

April 15,2024 3.5.0 Added supported codecs for Radio Gateway interoperability.

September 20, 3.4.0 Updates for releases 3.3.0 and 3.4.0.

2023

July 24,2023 3.3.0 Added MELPe to available codecs.

December1,2022 3.2.0 New release.

September 26, 3.1.2 No updates.

2022

August 24,2022 311 Replaced the term ‘engagebridge’ with the term ‘patch’ in
most instances.

June 1,2022 3.1.1 Updated ‘Ports used by ICE Telephony’ section with new port
numbers. Updated ‘Audio Bridging’ section to specify that
patching requires ICE Rallypoint to be enabled, and that
patching multicast channels is not supported.

March 15,2022 3.1.0 Document created.

2 Introduction

This document describes how Instant Connect Enterprise (“ICE”) works and how elements of the sys-
tem interoperate: what system components comprise ICE, what their general purpose is, how they
communicate with one another, and how they can be deployed inside your organization. This docu-
ment does not describe how to use or administer these components. Refer instead to the ICE Server
Administration Guide as well as the ICE Desktop and ICE Mobile user guides for this information.

This document contains four primary sections:

« Deployment architecture: A discussion of special considerations related to Kubernetes.
« ICE Server: How it works, and how clients interact with it.
+ ICE media engine: A discussion of the set of software libraries and technologies used “under

Instant Connect Software, LLC 8

ICE Technical Operations

the hood” throughout Instant Connect that are responsible for the conveyance of audio be-
tween users.

« Ancillary server components: ICE Telephony, ICE Rallypoint, ICE Static Reflector and ICE Patch
Server that operate independently of ICE Server and which can be deployed outside of Kuber-
netes or in multiple places in the network.

2.1 ICE system components

The Instant Connect Enterprise system is comprised of the following components. Each is described
in greater detail later in this document.

Table 2: Instant Connect Enterprise system components

Component Description

ICE Server A Kuberenetes-deployed server system used to manage and provision
the ICE system.

ICE Desktop Cross-platform desktop application that runs on Windows, Linux and
macOS offering all the features of the ICE Mobile client, plus the ability to
configure and administer patches, reflections and the ICE Server.

ICE Desktop for Web A browser-based version of ICE Desktop that provides a nearly identicial
user interface and featureset as the macOS, Windows or Linux-native ICE
Desktop. ICE Desktop for Web is a pure web applicaiton and does not
require the installation of any browser plugins or other special software
on the client device.

ICE Mobile Cross-platform mobile application for Android and iOS supporting
push-to-talk, public and private telephone communications, instant
replay, and user presence/location.

ICE Telephony Connects the ICE voice platform to a telephone network. Enables ICE
Mobile and ICE Desktop users to make and receive phone calls from the
PSTN and/or a corporate PBX.

ICE Rallypoint A traffic “packet forwarder” linking the communications of multiple users
across disparate networks. Rallypoints can be meshed together for scale,
resiliency, and network efficiency.

ICE Patch Server Bridges audio traffic between channels, allowing a talker on one channel
to be heard by participants of other channels.

Instant Connect Software, LLC 9

ICE Technical Operations

Component Description

ICE Static Reflector Mirrors traffic from a unicast channel onto a multicast network, useful

when providing interoperability with other systems (like donor radios

and IP desk phones) that communicate using RTP over IGMP multicast.

ICE Archiver Enables an administrator to mark certain channels in the system for
recording. The ICE Archiver “listens” to these channels, records

talk-bursts heard on them, and makes those recordings available for

future review.

2.2 Third party Kubernetes components

While not authored or maintained by Instant Connect, these components may be installed, by default,
into the Kubernetes cluster when installing ICE. They are primarily intended as a convenience for cus-

tomers new to Kubernetes or building a cluster specifically for ICE.

When deploying ICE onto a Kubernetes cluster that is being shared with other applications, it’s
likely the cluster will already have these (or equivalent) tools installed. Administrators are free—and

encouraged—to use their own monitoring and analysis tools whenever appropriate. Consult the
Administration Guide for details about omitting these components during installation or utilizing

equivalent tools in their place.

Table 3: Third party Kubernetes components

Component

Nginx-Ingress Controller

Prometheus / Loki/ Grafana

Description

Required. Routes traffic received by the cluster to the service that it’s
intended for. Every cluster running ICE Server requires an ingress
controller of some kind to forward traffic to ICE, but administrators
are not required to use this specific ingress—others are available on
the market—nor are they required to use the default configuration
that ships with ICE.

Optional. An open-source analytics and monitoring platform useful
for searching and viewing log messages generated by application
components running inside Kubernetes. It also provides data
visualization and dashboards of system health and activity (like active
network traffic, cluster node memory, CPU utilization, etc).

Instant Connect Software, LLC

10

ICE Technical Operations

Component Description

Swagger Optional. An open-source web application providing technical
documentation of the ICE REST web services. This tool is primarily
useful for software developers interested in building custom
integrations with Instant Connect.

2.3 Architectural design goals

Instant Connect Enterprise has been written from the ground-up with these goals in mind:

2.3.1 Scalable, distributed media processing

Unlike most voice collaboration platforms, virtually all media processing performed by Instant Con-
nect Enterprise is handled at the edge of the network rather than inside a centralized server. Audio
mixing, vocoding, and encryption are processed by each user’s client device. The ICE Rallypoint, the
component whose function is closest to a central media server, behaves like a network switch for-
warding audio packets to clients who expect to receive them, without regard for their payloads.

This architecture has several benefits:

1. Enables a “tactical” mode of operation in which ICE clients can communicate with one another
without need for a provisioning server. In environments where IGMP multicast is available be-
tween users, then not even a Rallypoint is needed.

2. In environments employing an ICE Server, users can still communicate even when the server
connection is lost. Further, when a channelis configured to use a Rallypoint and the connection
to that Rallypoint is lost, the channel will failover to use multicast.

3. It makes large scale environments possible without complex or excessive server hardware.

2.3.2 Network simplicity

Instant Connect utilizes “Internet friendly” protocols throughout its ecosystem. Clients connect to
the ICE Server using HTTPS and to Rallypoints using SSL. Thus, most system operators who need to
provide access to users outside of their firewall only need to open three ports: 443 for HTTPS, 7443
for Rallypoints and 8443 for Rallypoints used by ICE Desktop for Web.

Instant Connect Software, LLC 11

ICE Technical Operations

Telephony functions that are available in ICE Desktop and ICE Mobile are performed entirely through
these interfaces—there is no need for complex firewall rules, SIP session border controllers, STUN/-
TURN servers or similarly complicated network setups common to architectures that expose SIP or
UDP traffic to users outside your firewall.

2.3.3 Platform ubiquity and longevity

Instant Connect is built upon modern, leading technology frameworks: platforms that we believe will
become de-facto standards in the years to come, if they’re not already. Doing so allows our software
to run on virtually any hardware or operating system:

+ Docker and Kubernetes make cloud-scale applications a reality while providing a layer of ab-
straction between ICE Server and the operating system and hardware it’s running on. Any com-
pute platform capable of running Docker/Kubernetes can run ICE.

« Electron, React and Redux offer a modern application framework for web and cross-platform
desktop applications. Used by a rapidly-growing number of popular applications.

+ Dart and Flutter are the new kids on the block for cross-platform mobile development. A single
codebase that can be shared between iOS and Android means that ICE has the same feature set
and user experience across all devices. And a bug fixed on one platform is a bug fixed on both!

2.3.4 Flexibility in scale

Instant Connect’s ability to serve large-scale deployments is accomplished through the combination
of a distributed media architecture; a message-oriented provisioning server that is not dependent on
transactions and locks; and Kubernetes—an orchestration platform to grow and shrink the system
in response to load. However, ICE was not designed exclusively for cloud-scale environments: A sin-
gle server Kubernetes system can be deployed for small environments at little cost. And when using
tactical mode over an IGMP multicast network, no server components whatsoever are needed.

2.4 Simplified system diagram

The diagram below illustrates how key components interconnect in a single-cluster deployment of
Instant Connect Enterprise.

ICE Mobile and ICE Desktop clients can be deployed on any network with reachability to the ICE Server
system via ports 443 (HTTPS) and 7443 (SSL). When those clients are able to communicate with one
another over IGMP multicast, then they will be able to communicate in failover mode if their link to the

Instant Connect Software, LLC 12

ICE Technical Operations

Rallypoint fails. Note that ports 443 and 7443 are only defaults; the actual ports used for provision-
ing and voice traffic can be changed to any value by modifying the cluster’s ingress controller (not
illustrated).

ICE Media (RTP over SSL or RTP aver Multicast) Telephony (SIP, RTP/RTCP over UDP)

ICE Provisioning (HTTPS / Secure Web Socket) ~————— Kalka Messaging (Propritary / SSL)

ICE Server™ Kubernetes Cluster

Ty

tep/7443
pIT RallyPaint

| . e
ICE Mobile™ s
Bessssenss Kafka Message Bus
. C (@]
!s - . Ty - ~
N :
ICE Desktop™ N Client Bridge
: top/443

Platform Services

. S . oy

F — —
s ™

Kafka
Messaging

ICE Telephony } mus Server Bridge

. S

: 1
udp/5060+ :
p ~
 topraas |) Cassandra
REST Bridge Database
, | ———
& Enterprise IT

IP Desk Phones /
PSTN

Cisco Call Manager / PBX

Figure 1: Simplified, single-node deployment diagram

The ICE Telephony component is deployed as a Docker container on a separate server outside the
Kubernetes cluster. This host must have reachability back to the ICE Server cluster as well as unfet-
tered voice access to the Call Manager which it is bridging. The actual protocols and ports used in this
SIP/UDP link are negotiated at registration and call time. External IT systems which intend to interact
with ICE Server’s RESTful web services API need to be able to reach port 443 on the server.

3 ICEOS

ICE Serveris packaged and distributed as a Helm chart referencing Docker containers that are intended
for deployment into a Kubernetes cluster. Building and maintaining a Kubernetes cluster can be a
challenging task, especially for administrators not already familiar with Kubernetes and its related
ecosystem of tools and utilities.

Instant Connect Software, LLC 13

ICE Technical Operations

ICE OS refers to a Linux operating system running a pre-configured, single-node Kubernetes cluster
and other system utilities and software required to run ICE Server. ICE OS was developed as a way to
easily deploy ICE Server in environments where an existing Kubernetes cluster is not available. ICE OS
was designed with these goals in mind:

+ Easytoinstall as avirtual machine (or directly on bare metal) with no knowledge of Kubernetes.

+ A highly-secure, “lights out” operating environment that does not require regular OS-level
patches or system maintenance.

+ An easy-to-use configuration wizard web application that enables an administrator to customize
their installation without hand-editing configuration files or memorizing complex command-
line tool syntax.

+ Support for small to medium sized installations with up to several thousand simultaneously
active users (depending on hardware).

+ Single-site and geo-redundant (dual-site) deployments.

Customers may choose to install ICE Server using ICE OS or directly onto a Kubernetes cluster. See
the “Kubernetes deployment models” section, below, for details.

3.1 LinuxKit

Linux is an open-source operating system kernel initially developed by Linus Torvalds. It serves as the
foundation for numerous operating systems, collectively known as Linux distributions. Renowned
for stability, security, and customization, Linux operates on a wide range of devices, from personal
computers to servers and embedded systems. Its modular nature allows users to tailor the OS to
their needs, replacing or modifying components as desired. Its collaborative development model
encourages community contributions, fostering innovation and continuous improvement. Linux has
become a cornerstone of modern computing, powering critical infrastructure, mobile devices, and
user-friendly desktop environments worldwide.

LinuxKit is a lightweight, open-source toolkit that enables building and running secure, container-
focused Linux systems. It empowers developers to create custom, minimal Linux distributions opti-
mized for containerized applications. With its flexibility and simplicity, LinuxKit aids in constructing
efficient, portable, and isolated environments for modern software deployment.

ICE OS is built using LinuxKit and contains only the system components and utilities required to run
ICE Server. Thisimplies that ICE OS is a Linux operating system, but not a standard Linux distribution
like Ubuntu, CentOS or RedHat. Additionally, ICE OS is an “immutable” operating system like those
used in physical appliances: It runs from a read-only file system and cannot be modified, patched, or
updated by an administrator or malicious user.

Instant Connect Software, LLC 14

ICE Technical Operations

ICE OS is distributed as an disk image (in . iso format) and is intended to run directly from this disk
image. Unlike traditional operating systems, the diskimage is not an operating system “installer.” ICE
OS is never copied from the disk image onto a writeable file system. Instead, the ICE OS disk image is
intended to be installed physically or virtually as a DVD in the host system and paired with a read/write
filesystem where ICE application data and system configuration will be written. Consult the server
installation and administration product documentation for details.

3.2 Kubernetes

Software containerization encapsulates applications and their dependencies into isolated units,
called containers. These containers provide a consistent and portable environment, ensuring that
software runs reliably across different computing environments. Containerization simplifies deploy-
ment, scaling, and management of applications, fostering consistency and efficiency in software
development and operations.

Kubernetes (often stylized as k8s), originally developed by Google, is an open-source container orches-
tration platform that automates the deployment, scaling, and management of containerized applica-
tions. It provides tools for container deployment, load balancing, and self-healing, making it easier
to manage complex microservices architectures. Kubernetes abstracts the underlying infrastructure,
enabling seamless scaling and resource optimization while enhancing application reliability. It has
become a cornerstone in modern cloud-native application development, allowing efficient utilization
of resources and simplifying the management of containerized workloads at scale.

Many of the world’s largest cloud-hosted applications use Kubernetes to achieve their scale and power.
Kubernetes enables applications to achieve this scale by orchestrating their execution across a cluster
of computers. A cluster refers to one or more physical computers (called nodes) working together to
form a single, logical system. A cluster could be just a few servers, or tens of thousands of them.

Kubernetes is analogous to the operating system that ICE Server runs on. In much the same way that
an application that runs on Linux, Windows or macOS utilizes components provided by that operating
system, ICE Server depends on and interoperates with elements provided by the Kubernetes ecosys-
tem.

3.3 Benefits of Kubernetes

Kubernetes offers numerous benefits for managing containerized applications. It automates deploy-
ment, scaling, and updates, optimizing resource utilization and ensuring high availability. Its self-
healing capabilities automatically restart or replace failed containers, enhancing application reliabil-
ity. Kubernetes abstracts underlying infrastructure, enabling portability across cloud providers. With

Instant Connect Software, LLC 15

ICE Technical Operations

load balancing and auto-scaling, it accommodates varying workloads. It enhances security through
isolation and role-based access controls. Overall, Kubernetes streamlines complex application or-
chestration, reducing operational complexities and accelerating development in cloud-native com-
puting.

+ Portability: Kubernetes eliminates the complexities of dealing with variations in underlying
infrastructure, so the same Instant Connect Enterprise software can be run on different oper-
ating systems; either on “bare metal” or as virtual machines; on-prem, in the cloud, or across
clouds. This capability allows Kubernetes to adapt to changes in your IT department’s software
and hardware infrastructure.

+ Resiliency: Kubernetes manages the applications running within it to ensure that they are avail-
able to end-users. If an application or any of its components fail (for example, due to a hardware
failure), Kubernetes automatically redeploys those components and ensures they remain avail-
able.

« Scalability: Applications like Instant Connect Enterprise that have been purposely designed
and built to be managed by Kubernetes can scale dynamically in response to fluctuations in
demand. This capability reduces the resource footprint of an application during normal usage
while maintaining the ability to serve spikes in demand.

3.3.1 Drawbacks of Kubernetes

Kubernetes, while powerful, has drawbacks. Its complexity necessitates a significant learning curve
and dedicated personnel for efficient deployment. Managing clusters demands substantial resources,
both in terms of infrastructure and human expertise. The dynamic nature of microservices can lead
to intricate networking issues and configuration complexities. Security concerns arise from miscon-
figurations, potentially exposing vulnerabilities. Additionally, upgrading and migrating applications
can be challenging. Its diverse ecosystem might complicate tool selection. Inadequate monitoring
and resource management might result in cost inefficiencies.

Despite these downsides, proper planning, training, and diligent management can help organizations
navigate and mitigate these challenges while leveraging Kubernetes’ benefits.

On-premises deployments can avoid these drawbacks by relying on ICE OS, which comes optimally
prefigured for security and compatibility.

3.4 Kubernetes deployment models

Kubernetes is a powerful and flexible platform for executing highly scalable and distributed applica-
tions. This section describes various deployment models that can be successfully used with Instant

Instant Connect Software, LLC 16

ICE Technical Operations

Connect Enterprise.

3.4.1 On-premises or cloud hosted

Instant Connect Enterprise can be deployed onto a Kubernetes cluster that is either physically located
at a customer’s site (“on-prem”) or onto a Kubernetes cluster running in a public cloud, like Amazon
Web Services or Microsoft Azure. Although the installation procedure is different, once installed, In-
stant Connect operates identically no matter the environment. The choice of which to utilize depends
on the needs of the organization.

When deploying in a public cloud, we recommend utilizing a managed Kubernetes service (such as
Amazon EKS, Google GKE or Azure AKS) in which Kubernetes is provided as a service and the admin-
istrator is freed of the burden of managing the control plane elements of the cluster. While not advis-
able, it’s possible to construct your own cluster using raw cloud compute resources (like Amazon’s EC2
instances). Most organizations will achieve best results utilizing a managed service where networking,
ingress, and load balancing concerns have been addressed by the provider.

Some elements of your Instant Connect system will likely need to remain on-premises even when
the ICE Server is hosted in a public cloud: ICE Telephony should be deployed on-prem, adjacent to
your organization’s call manager. Similarly, donor radios linked to ICE channels will require a Static
Reflector deployed in the same multicast domain as the radio gateway (also on-prem).

3.4.2 Single-node cluster (ICE OS)

Asingle node cluster refers to a Kubernetes system comprised of a single physical serverandis the only
deployment model supported by ICE OS. While this effectively defeats the resiliency benefits provided
by redundant hardware, it offers a low cost and simple deployment model for applications where large
scale and maximum uptime are not required.

Asingle node cluster running on a 16 core, 2.0 GHz Intel Xeon-based server with 32GB RAM is sufficient
for serving approximately 800 concurrently active users (producing a voice load of 19,200 calls per
hour). Scale can be increased vertically by adding additional memory and CPU cores.

3.4.3 Multi-node cluster

A multi-node cluster consists of three or more physical servers assembled together into a single Ku-
bernetes system. A three node cluster is capable of losing an entire physical node with little or no
visible impact to end users—administrators can demonstrate this ability by literally pulling the power
on a server while the system is in use.

Instant Connect Software, LLC 17

ICE Technical Operations

Three or more nodes are required. A two-node cluster cannot provide redundancy because of
quorum requirements inherent to the Kubernetes platform.

When multiple nodes are present in the cluster, client connections can be received on any node; see
the “Cluster Load Balancing” section (below) for a description of different techniques that can be used
to route incoming traffic to different servers.

A three-node cluster utilizing the same hardware as described previously (16 cores, 32GB RAM) is suf-
ficient for serving 2,500 concurrently active users. By adding additional nodes to the cluster, virtually
unlimited scale is achievable.

Careful: Simply using a three (or more) node cluster does not “auto-magically” produce a re-
silient or highly-scalable system. To achieve these goals special configuration of Instant Connect
is required to assure system components are sufficiently distributed across nodes. Consult the
product guide for details.

3.4.4 Loss of a data center

A multi-node Kubernetes cluster provides a very high level of resiliency, even when suffering a hard-
ware failure. But no matter how many redundant nodes are added to the cluster, if the data center
hosting it is lost then the software running on it will fail. In specialized environments it’s important to
architect a solution resilient to the loss of an entire data center.

There are two primary mechanisms for achieving this extreme level of resiliency. A more detailed
description of these approaches is described in the section “Geographic redundancy.”

3.4.4.1 Distribute the nodes of a single cluster between data centers This approach solves the
problem at the Kubernetes-level. That is, Instant Connect (and other Kubernetes applications) are
unaware that they are being distributed between different locations.

Nodes in a cluster expect to be able to communicate with one another using a high-speed, low-latency
network link. Similarly, persistent volumes (disks) will need to be replicated across this link, too.
Achieving this level of network connectivity between physical sites may be difficult or impossible.

For the same quorum-related reason that a cluster cannot have only two nodes, a single geo-
redundant cluster must be distributed across three (or more) data centers. Some solutions achieve
this by running two primary data centers and hosting a third, tie-breaking element in a small
“closet.”

Instant Connect Software, LLC 18

ICE Technical Operations

3.4.4.2 Create two clusters and configure Instant Connect to replicate data between them
This is Instant Connect’s preferred approach to providing data center level resiliency.

This approach, which is custom to Instant Connect, uses two independent Kubernetes clusters—be
they single-node or multi-node—which are installed in different locations. Instant Connect runs on
both clusters and replicates data and signaling messages between them to make the system appear
as a single, logical entity. Because this solution involves application-layer data replication, network
bandwidth and latency requirements are substantially relaxed; the two clusters can function (albeit
in a “split brain” mode) for hours, days or even weeks without permanent impairment.

3.4.5 Choosing a deployment model

The two tables below illustrate the benefits and drawbacks of choosing a deployment model and clus-
ter architecture.

Table 4: Hosting model benefits and drawbacks

Deployment Benefits Drawbacks

Cloud hosted Cost and complexity of building, Assumes ICE clients are able to reach the
administrating and maintaining a Internet. Some IT departments may
Kubernetes cluster is delegated to the perceive solution as more expensive
cloud provider. Installation can be than utilizing their own hardware.

completed in minutes.

On premises System can be deployed on remote or Substantially increases administrative
highly secured (“air gapped”) networks ~ and maintenance burden on the
that are not connected to the Internet. administrator. Administrator becomes
responsible for creating the Kubernetes
cluster and assuring those machines
comply with the organization’s security
and IA policies.

Instant Connect Software, LLC 19

ICE Technical Operations

Table 5: Cluster type benefits and drawbacks

Cluster

Single node cluster (ICE
0S), single site

Multi node cluster,
single site

Two clusters,
geographic redundancy

Benefits

Simplest, least resource-intensive
deployment model. Ideal for small
scale systems, labs, demo
environments and mobile systems
(i.e., vehicle mounted).

Allows organizations to increase
system scale over time by adding
nodes to the cluster. Provides full
resiliency between nodes in the
cluster: Any node can fail with little
or no user-visible impact to
operation.

Provides extra resiliency when an
entire data center goes offline. ICE
clients automatically reconnect to
the surviving data center and
continue operating normally.

3.4.6 IP ports used by the system

Drawbacks

Provides no hardware resiliency.
Should the physical machine
running ICE fail, the system will
suffer a full outage.

Additional complexity and
compute resources: A minimum of
three physical servers are required
to provide hardware level
resiliency.

Most complex and resource
intensive deployment; requires
double the compute resources of a
single-cluster setup and demands
a high-speed link between clusters.
Not all functions of Instant Connect
are fully resilient, even when using
this deployment model.

Instant Connect Enterprise uses two primary ports for communication between clients (ICE Desktop

and ICE Mobile) and server-side components (RallyPoints and ICE Server):

Instant Connect Software, LLC

20

ICE Technical Operations

Port Use

443/tcp Establishes a secure web socket to the ICE Server system for management and
provisioning functions. Clients send and receive messages over this link to receiving
information about channel configurations, incoming telephone calls, person presence
status, location, etc. This port is also used by third part IT systems that interact with
ICE Server via REST web services and web hooks.

7443/tcp Establishes a secure SSL connection to the RallyPoint (or, potentially, many
RallyPoints depending on deployment architecture) used to convey audio traffic
between users on a channel that is configured to use the RallyPoint.

Specific port numbers—443 and 7443—are defaults; system administrators may configure the
system to utilize alternate port numbers as appropriate.

3.4.6.1 Portsused by ICE Telephony ThelCE Telephony component behaves like a desktop or mo-
bile client in its communication with the rest of the ICE server infrastructure: That is, it uses port 443
and 7443 for communication with the ICE Server and RallyPoints. However, for communication with
a call manager or PBX, ICE Telephony utilizes the session initiation protocol (SIP) over the following

ports:

Port Use

5060/udp/tcp SIP system signaling between ICE Telephony and the call manager or PBX.
5061/tcp If TLS/SRTP is enabled.

5070-5270/udp SIP signaling for registered dial numbers. Each dial number requires two

ports; ICE Telephony supports up to 100 registered dial numbers. Not all ports
in this range will be used unless a system is configured with 100 registered dial
numbers.

16384-20480/udp Realtime transport protocol (RTP) traffic conveying call audio between ICE
Telephony and the call manager or PBX. Not all ports in this range will be used
simultaneously; per the SIP standard, actual ports are negotiated during call
setup and are used only for the duration of a call.

3.4.6.2 Ports used by external static reflectors and patch servers Both static reflectors and
patch servers deployed outside the cluster behave like ICE Desktop and ICE Mobile endpoint devices:

Instant Connect Software, LLC 21

ICE Technical Operations

They establish SSL (7443/tcp) connections to one or more RallyPoints (depending on the configura-
tion of the system), plus a single secure web socket (443/tcp) to the ICE Server in order to receive
provisioning messages.

3.5 Cluster load balancing

The Kubernetes cluster is designed to accept traffic received by any node in the cluster. Even if an
instance of the service for which the traffic is intended is not running on that node, the Kubernetes
ingress controller will automatically forward the connection to a node capable of servicing the re-
quest.

System administrators have several options to choose from when deciding how to route traffic
into their ICE Server. Consider a hypothetical cluster with three nodes, n1.cluster.com,
n2.cluster.comandn3.cluster.com:

+ Chose any one physical node in the cluster, say n1.cluster.com and route all traffic to it
by using its hostname as the server address when logging in. Doing so lets this node function,
implicitly, as the cluster’s load balancer. This provides the simplest configuration but at the cost
of introducing a single point of failure: Should n1.cluster.comfail, the ICE Server software
will remain running but clients won’t be able to reach it on one of the remaining, live nodes.

+ Configure each physical node in your Kubernetes cluster as an “ingress address” on the “Orga-
nization” settings screen in ICE Desktop. In this example, you’d provision n1.cluster.com,
n2.cluster.com, n3.cluster.com as ingress addresses. When logging into ICE Server,
users may enter any one of those hostnames as the server address. Should that node fail, clients
willautomatically try to reconnect to the other nodes. This configuration solves the single-point-
of-failure problem described above, but may not evenly distribute ingress load across the clus-
ter (nor does it provide a way for an administrator to forcibly migrate users to or from a specific
node).

+ Front the cluster with an external load balancer. This configuration can be as simple or as com-
plex as your needs demand—even offering global routing of traffic to geo-redundant clusters
distributed around the world.

3.6 Geographicredundancy

Recall that Kubernetes inherently provides a great deal of resiliency across the nodes of its cluster. A
properly designed cluster can lose one or more nodes without impacting the operation of the soft-
ware running on it. However, achieving this same level of resiliency to address the possibility of an
entire data center going offline is notably more complicated. We refer to this level of resiliency as
“geographic redundancy.”

Instant Connect Software, LLC 22

ICE Technical Operations

A geo-redundant system must be designed to handle a loss of all nodes in either data center, mean-
ing Kubernetes control plane elements must have sufficient replication and distribution between the
sites, and each site should be sized to accommodate the entire load of users in the event that the
other site should fail. If the size of deployment requires, say, four nodes to serve all users, then a
geo-redundant system would require eight total nodes: four at each site.

As previously described, there are two approaches for creating geographic redundancy in Kuber-
netes:

3.6.1 Single cluster that spans two physical data centers

Thefirst option is to create a single Kubernetes cluster, but distribute the physical nodes of that cluster
across data centers.

In this configuration, a loss of a data center appears to Kubernetes as a loss of redundant nodes in the
cluster. Kubernetes has no understanding of “data centers” or the physical distance between nodes
in the cluster. It sees a loss of a data center no differently than one or more machines in a single rack
failing. This is, essentially, how many cloud providers offer “availability zones” and other such cross-
site resiliency assurances. Of course, the cluster ingress design (as discussed in the previous section)
must allow for traffic entering both data centers.

The challenge with this approach is that it places a substantial burden on network engineers: Because
this architecture treats all nodes as belonging to the same cluster, there is nothing to optimize or
recognize LAN vs WAN network traffic or storage. Each node is expected to operate as through it was
on the same switch as every other node, connected to the same underlying NAS, SAN or equivalent
storage medium. This implies that the data centers will need to be linked with a high-bandwidth, low
latency network connection between them. The exact requirements of this link depend entirely on
the cluster’s load, CNI plugin, storage method, etc.

3.6.2 Replicate ICE data between independent clusters

The second option is to build two or more entirely separate Kubernetes clusters and configure Instant
Connect to replicate data and messages between them (forming a single, logical instance of ICE). This
is the mechanism officially supported by Instant Connect (although Instant Connect only supports a
two-cluster deployment).

Clusters communicate with one another through a virtual private network (VPN) using WireGaurd.
Setup and configuration details are described in the geo redundant cluster setup guide.

Instant Connect Software, LLC 23

ICE Technical Operations

Instant Connect is unaware that it is operating across clusters. In much the same way that ICE
does not know, monitor, or care how many physical nodes its software components may be or-
chestrated across, it has no knowledge of this dual-cluster “plumbing.”

In this design, network requirements are much more lax than operating a single cluster across sites.
Instead, ICE requires two forms of data to be replicated between clusters:

+ Kafka messages produced on one site must be relayed to the other site. For example, Bill is con-
nected to Site A and tries to call Brenda connected to Site B. The replication of Kafka messages
allows the real-time signaling of the call flow to reach both parties connected to different sites.

« Data persisted in the Cassandra database must be visible to users on others sites. Cassandra
supports multi-node, multi-data center replication out of the box.

These tools—Kafka and Cassandra—are designed to be replicated over lower-bandwidth, higher
latency network links and can easily adapt to intermittent and short-term partitions (referred to,
broadly, as “eventual consistency”). Low bandwidth and/or high latency network links between sites
will produce a degraded user experience but not a system outage.

3.6.3 Cluster partitioning

When geo-redundant clusters become partitioned from one another—that is, unable to communicate
with one another over the network—both sites will continue to operate “normally,” albeit in a split-
brain configuration.

Recall that the ICE Server is unaware that it is even executing across different clusters. A partition-
ing event simply means each site will see the other as idle (generating no messages or configuration
changes). End users connected to either site will be unaware that anything has happened on the other.
Configuration changes or signaling initiated on one site will not propagate to the other and this will
have the following observable side effects:

3.6.3.1 Aprivate telephone call made from a user on Site A to a user connected to Site B will not
go through. Thecalling party will hear ring-back but the callee will not observe anincoming call. As
soon as the sites reconnect, these signaling messages will be delivered. During a brief partition, this
may manifestitselfin a delay between when the callis placed and when the receiving party rings. If the
call attempt is made and then aborted while the sites remain partitioned, the callee may experience a
brief “ring” / “call declined” state on their device as both enqueued messages are eventually delivered,
back-to-back.

Instant Connect Software, LLC 24

ICE Technical Operations

3.6.3.2 Public telephone calls placed or received may be delayed or fail. The ICE Telephony
component—Instant Connect’s bridge to the telephone network—attaches itself to one cluster or the
other. Thus, all telephone calls to the PSTN are treated as terminating on one site. Calls placed or re-
ceived from the site opposite that which ICE Telephony is attached will fail in the same way described
for private calls.

At this time, ICE does not support geo-redundant telephony integration.

3.6.3.3 An intercom established between users of different sites will not immediately appear
on all dashboards. Until the sites reestablish their link, the message indicating a user has been
added to an intercom will not be delivered to users connected to another site. The initiating user will
be unaware that the other users’ dashboards have not been updated with the intercom channel.

3.6.3.4 Configuration changes made on one site will not appear to users of the other. Any
changes to system configuration (including channels or users that are added, removed or modified)
that are made on one site will not be visible to users on the other. When modifying a channel configu-
ration, this can resultin different users utilizing different configuration values—Rallypoint, encryption
mode, etc—and this may result in a partitioning of audio traffic even when the audio’s bearer network
is not itself partitioned.

3.6.3.5 Users may see inconsistent presence and location information. Online/offline status in-
dications as well as users’ GPS location visible on the map will diverge between users connected to
different sites. For example, consider a scenario in which Bill (connected to Site A) shares a channel
with Brenda (connected to Site B). At some point, the sites become partitioned and while they are
partitioned, Bill logs out of ICE. Brenda will continue to see Bill’s status as “online” since the message
that Bill logged out cannot be delivered to Brenda’s site.

3.6.3.6 What happens to audio? It depends entirely on how a channel has been configured and
the nature of the network used to convey its audio.

« Inthe case of multicast, users connected to different clusters will still be able to hear one another
provided the multicast network used for voice traffic has not also become partitioned somehow.

+ In the case of unicast (Rallypoint) traffic, the behavior will depend on the design of the Rally-
point mesh. In the simplest case, a Rallypoint is present in both clusters and together they are
meshed. If a channel is configured to use this cluster-to-cluster Rallypoint mesh then channel
audio will likely be partitioned in the same way as provisioning messages: Users of Site A will

Instant Connect Software, LLC 25

ICE Technical Operations

be able to hear one another and users of Site B will be able to hear one another both a Site A
user will not hear a Site B user and vice versa.

Careful: There is not a relationship between the ICE Server and Rallypoint utilized by an
end user’s device. A client device could be connected to Site A for ICE Server provisioning
messages and also to Site B for Rallypoint traffic.

3.6.4 Problems associated with long-lasting partitions

Instant Connect’s geo-redundant clustering mechanism is not intended to operate in a partitioned
environment for extended periods of time. In addition to the previously discussed anomalies, the
longer two sites are partitioned, the greater the chance for data inconsistencies to emerge, namely:

+ Kafka messages are discarded after approximately two hours. Messages used to signal a user’s
client to take some action (for example, a message to display an intercom channel on the dash-
board) will simply never be delivered if sites are partitioned for a long period of time. Users will
need to log out and log back in to “resync” these state inconsistencies.

+ Cassandra nodes may need to be repaired by invoking the nodetool repair command
on them. Instant Connect Enterprise automatically performs this step periodically but system
administrators may wish to initiate this immediately following a long partition.

« Elasticsearch results (those displayed in people/channel search operations) may produce dif-
ferent results and/or incorrect online/offline status indications.

4 ICE Server

The ICE server is responsible for user and channel management within an Instant Connect Enterprise
system. Clients connect to the ICE Server to be told of which channels they’re able to participate on;
be notified (signaled) of incoming private and PSTN telephone calls; be made aware of other users of
the system; and learn the presence and location of teammates.

All application-layer configuration of the ICE Server is performed through the ICE Desktop client ap-
plication. There is no command line interface or special browser-based portal for administering the
system. Of course, only users with the “Administrator” role will see and have access to these configu-
rations (within ICE Desktop, log into ICE Server then click the gear icon to view settings and configu-
ration).

As described in greater detail below, ICE Server is a not a traditional REST or SOAP-based services
oriented architecture (SOA). ICE Server is, rather, a message-oriented system that sends and receives

Instant Connect Software, LLC 26

ICE Technical Operations

messages asynchronously to clients connected to it. This gives clients near-instant response times to
changes in configuration, telephone signaling, etc.

4.1 Client connections to ICE Server

ICE Desktop and ICE Mobile clients connect to the ICE Server by establishing a WebSocket over which
they exchange messages with the server. This design provides for a fully reactive system: Clients do
not have to ask (poll) the server to know if someone might be trying to call them or if they were re-
cently added to a channel. Instead, they are told of such changes asynchronously and react to them
immediately. While the ICE Server is not a traditional REST-based system, it does provide a facade for
REST-style external access—more on that later.

Most deployments are configured to use SSL/HTTPS on port 443 to create a secure (encrypted) web
socket, although ports and protocols are ultimately configurable through changes to the cluster’s
ingress controller. No technical limitation prevents ICE to be used over an unsecured connection,
doing so is highly discouraged as passwords and other personal information are easily captured by
hackers and eavesdroppers.

4.1.1 Establishing the connection

To establish aninitial connection, the end user must input the address of the ICE Server in the form of
a URL, along with their username and password. When a non-standard port is being used (i.e., values
other than 443 for HTTPS or port 80 for HTTP), then the port must be explicitly provided in the URL
(http:). When HTTPS on port 443 is in use, the user
need not enter a scheme or port; just the hostname (demo. instantconnectnow. com).

The client initiates the login process by performing an HTTP POST to the server address at the path
/login (i.e,demo.instantconnectnow.com/login. The username and clear-text password
is transmitted in the body of the request in query string format, along with the following headers:

« X-Client-DeviceID — An ICE-proprietary hardware device ID that’s used by the system to
license the client.

+ User-Agent — Astring indicating the type of client (to indicate, for example, mobile or desk-
top).

+ X-Client-Version — The software version of the connecting client.

If the user’s credentials are accepted by ICE Server, the response to the POST request will contain an
authorization token that, from this point on, represents the user’s session identity. No further com-
munication with the server involves the use of the user’s username or password. The authorization
token is a string of random alphanumeric characters. It does not encode any information about the

Instant Connect Software, LLC 27

ICE Technical Operations

user or their password, and the token may be revoked at any time from within the “License” settings
screen in ICE Desktop by clicking the “End Session” button next to the user’s name.

Using the authorization token provided in the response, the client then “upgrades” the connection
to a WebSocket (the details of which are defined by RFC-6455). Once the WebSocket connection has
been established, the ICE Server sends an initial message to the client containing information about
the client’s session. This data includes (among other things) information about the API level of the
sever, cryptographic keys and activation codes to license the device, the connection addresses the
client may use when reconnecting, and some initial information about the connected user’s profile.

4.1.2 Determination of online/offline user presence

ICE Server uses its knowledge of which clients maintain a WebSocket with it to infer online/offline
status and track license utilization. That is, as long as a user’s agent (ICE Desktop or ICE Mobile) is
connected to the server, ICE will infer that the user is online and this presence will be broadcast to
other users. To detect stale connections, ICE uses a ping/pong message (defined by the WebSocket
standard) to quickly detect when the client has become detached from the server. Stale connections
are closed; the impacted user’s presence state returns to “offline” and their session license is returned
to the pool.

Be aware that ICE Server tracks only a single, global online/offline status value for each user. A user is
considered online if they are connected to ICE Server from one or more devices.

Each WebSocket connection will consume a mobile or desktop license. Asingle user logged into multi-
ple devices will appear to consume multiple licenses. Administrators can forcibly end a user’s session
from the license settings screen in ICE Desktop.

4.1.3 Determination of a user’s location

ICE Server maintains a single GPS location for each user actively logged into the system. Each user’s
location is reported by the client application they’re using. This location is shared with other users
having at least one channelin common with the reporting user.

Having a single GPS location associated with a person can produce confusing results when a user is
logged in to multiple devices, especially when those devices are not in the same location. ICE assumes
that a user is currently in the location that was last reported by a device they are connecting from.
Thus, if a user is connected through different clients each reporting different locations, other users
on the system may see the user’s location jump back and forth between the location reported by one
device and the other.

Instant Connect Software, LLC 28

https://tools.ietf.org/html/rfc6455

ICE Technical Operations

The ICE Mobile client uses Android and iOS’ in-built location services to determine the user’s spatial
coordinates. The accuracy and algorithm used to determine location is specific to each device and
operating system and might be as simple as the reporting the value returned from the device’s GPS
receiver, or as complicated as inferring location from IP address, nearby WiFi access points, etc.

ICE Desktop, which is designed for use on devices that typically do not have in-built GPS hardware, del-
egatesto Google Maps Geolocation APIs to infer GPS coordinates. The location returned by this service
is usually close but highly variable in its accuracy. ICE Desktop users can manually specify their loca-
tion (or disable location reporting altogether) when working in environments where Google’s results
are inaccurate or unavailable.

4.1.4 Client reconnect behavior

Each time that a client connects to the ICE Server, the system notifies the client of alternate points of
ingress that it may use to connect to the system the next time a connection needs to be made. Clients
“save” this information to persistent storage so that once a client successfully connects to a system it
can utilize these alternate sites or addresses even after logging out or quitting the application.

How the client goes about choosing which ingress address to connect to is configurable in the system’s
“High Availability” settings (on the “Organization” settings screen in ICE Desktop). In environments
where no server ingress addresses have been configured, clients will always use the “Identity” recon-
nection strategy.

Table 8: Client reconnect strategies

Reconnection Strategy Description

Preferred The client will choose from the list of available ingress addresses in the
order they appear (top-to-bottom) in the setting screen.

Nearest The client will choose from the list of available ingress addresses in the
order of their physical distance from the client (calculated using the
location assigned to the ingress in the Organization settings screen, and
the reported location of the client).

Identity Default. The client will reconnect only to the server ingress address
entered by the user in the login screen. All other ingress addresses
specified in the Organization screen are ignored. This choice has the
effect of disallowing clients to connect to any server address other than
the one explicitly entered on the login screen.

Instant Connect Software, LLC 29

ICE Technical Operations

Reconnection Strategy Description
Random The client will randomly choose from the list of available ingress
addresses.

As an example, consider a system deployed in the United States with three ingress addresses: west
.demo.com,central.demo.comand east.demo.com: When the connection strategy is set to
“Preferred” clients will try to connect in the order: west, central, east,west, etc. When the strat-
egy is “Nearest”, a client in Chicago will connectto central, then east, then west whereas a client
in Los Angeles will connect to west then centra'l, then east. When the strategy is “Identity” all
clients will ignore the configuration made in the “High Availability” section of “Organization” settings
and connect only to the server the user entered in the login screen.

Clients connections to the ICE Server are “sticky.” Clients do not try to reconnect to their original
ingress or to a more ideal ingress once a successful connection is made. Once a client establishes a
connection to an ICE Server, it maintains that connection until the user quits, logs out, or the connec-
tion is broken.

Careful: Each client maintains both a single connection to the ICE Server, plus a connection to
every Rallypoint needed by all active channels. Loss of ICE Server connectivity does not neces-
sary imply loss of Rallypoint connectivity. Channels have their own Rallypoint reconnect and
failover strategy (described in detail later in this document).

4.1.4.1 Establishing an initial connection |If the user is attempting to log into a system that has
been previously connected to, the client will have “remembered” the alternate ingress addresses as-
sociated with that system and use them, if necessary, to re-establish a connection. Under certain
circumstances this can result in connecting to an address other than the one entered explicitly on the
login form. When establishing an initial connection, the client will try each alternate site only once
before “giving up” and reporting an error.

Using the example from above, consider a scenario in which a user had logged out of, and is now log-
gingbackintocentral.demo.com. Ontheloginscreen,they enterthe serveraddress: central.

demo. com, but when they click the “Login” button their client, having remembered alternate ingress
addresses, may choose a different ingress address to connect to.

Be aware that alternate ingress addresses are associated with the primary (“identity”) address used
to initially connect to the system. In the previous example, had the user re-entered a different server
addressonthelogin screen (say, east.demo. com)andthatalternate site was unavailable, the client
would not attempt to connecttowest orcentral.

Instant Connect Software, LLC 30

ICE Technical Operations

4.1.4.2 Detecting a connection interruption Recall that clients maintain two kinds of connec-
tions to the server environment:

« Aweb socket connection the ICE Server for management and provisioning functions. When this
connection has failed, the user’s avatar (visible in the top-right corner of the ICE Desktop and
ICE Mobile applications) will appear drawn with an animated glowing yellow ring.

« An SSL connection to the RallyPoint (or, potentially, many SSL connections to many RallyPoints
depending on deployment); used to convey audio traffic on channels configured to use a Rally-
Point. When this connection has failed channels reliant on the connection will display a “Lim-
ited connectivity” message with a slash through the channel’s cloud icon.

In the simplest case, clients are made aware of a connection interruption whenever their underlying
operating system informs them that the socket has been closed.

However, it’s possible for a loss of service to occur that does not cause the socket connection to be
terminated at all, or terminated in a timely manner. To recover from such failures, both connections
utilize a form of ping-pong messages that are sent back and forth between the client and server com-
ponents to detect such outages. When a client sends a ping to the server and does not receive a timely
“pong” message in response the client will presume the server/RallyPoint to be unreachable or out of
service and attempt to reconnect to an alternate ICE Server ingress address or to an alternate Rally-
Point. Similarly, requests made of the ICE Server that are not fulfilled also trigger the client to assume
an outage has occurred.

The amount of time required by the client to detect a connection interruption depends on the type of
failure and the component whose link has failed. Failures in which the client’s operating system de-
tects a socket closure typically occur quite quickly—within a matter of seconds (if not milliseconds).
Failures in which the socket remains open but the server becomes unresponsive typically take 30 sec-
onds to a minute to detect. In the case of an oversubscribed server component whose ping-pong
messages may be received intermittently can result in marginal service or delays in detecting an out-
age.

4.1.4.3 Reconnecting after a connection interruption If a client becomes detached from the ICE
Server for any unexpected reason (expected reasons include quitting the app or logging out), the
client will begin attempting to reestablish a connection to the ICE Server. It will choose the next ap-
propriate available ingress address using the configured strategy; if the connection attempt fails for
any reason, the next address will be tried and so on. The client will continue this process (using a back-
off timer to rate-limit requests) until a connection is established or a terminal connection response is
received by the client.

There are two terminal reconnect HTTP status codes that, when received, stop the client from trying
to reconnect any more:

Instant Connect Software, LLC 31

ICE Technical Operations

« HTTP 401 - Not Authorized-Impliesthe user’s session has been terminated by the ad-
ministrator or system. The user must log in with their username/password credential to regain
access to the system. ICE clients never store the user’s password on the device.

« HTTP 601 - No License Available-Impliesthatalllicenses are currently in use.

« HTTP 514 - Session Expired-Theuser’ssession hastimed out or been terminated by
an administrator; the user must reconnect using their username and password credentials.

4.2 Special considerations for ICE Desktop for Web

ICE Desktop for Web is a pure web application requiring no special software or browser plugins to
operate. It provides nearly the identical feature set of the native ICE Desktop application.

4.2.1 Application limitations

When using ICE Desktop in a browser, some features are unavailable or behave differently than when
using the native ICE Desktop application.

+ Hot keys (keyboard shortcuts): For security reasons, a web page cannot monitor key-press
events when the user does not have the window in focus. Because of this limitation, the hotkeys
feature is unavailable in the web version.

+ Audio steering: Users will not be able to direct audio to different speakers on their computer,
or choose the microphone device to use. These selections are made through the browser itself
(that is, a user will choose the speaker and microphone device in their browser’s settings; the
process of doing so is specific to each browser).

+ IGMP multicast channel connections: Web browsers do not support transmitting or receiving
IGMP multicast traffic. Channels not configured to use a Rallypoint will not work in a browser
(and will display a “Channel not available on web” message). Furthermore, configuration op-
tions related to choosing a network device for multicast traffic are not available in the web ap-
plication.

« Gravatars: Due to cross-origin security requirements and a limitation in the library used to ren-
der Gravatars, the web client will only display a user’s initials as their avatar, even when a Gra-
vatar is available.

« MELPe Codec: Channels configured to use this codec will not function on the web and will ap-
pear with the “Channel not available on web” message. This feature may be added in a future
release.

« FIPS 140-2 (Wolf SSL): All SSL connections utilize the browser’s internal cryptography engine
for security. Customers interested in FIPS-compliant security should utilize a FIPS-compliant

Instant Connect Software, LLC 32

https://en.gravatar.com/

ICE Technical Operations

browser. Note that the “Build” dialog will always display “FIPS 140-2 not validated” in the web
client, irrespective of the FIPS compliance of the browser.

+ App sounds: Some browsers will squelch audio (like ring tones) that are produced by a web
application when the browser window is minimized or in the background.

4.2.2 Browser limitations

When using ICE Desktop for the web, be aware of limitations and restrictions imposed by the
browser.

4.2.2.1 Use of older browsers [CE Desktop for the Web uses the WebAssembly (“WASM”) technol-
ogy for its media engine and relies on the SharedArrayBuffer feature in Javascript. These are
relatively new (but not cutting edge) features in web browsers; customers may find that ICE Desktop
for Web is incompatible with certain out-of-date browsers and operating systems.

ICE Desktop for Web has been tested and qualified for use on these browsers:

« Chrome: 114 and newer for Windows
+ Edge: 114 and newer (Internet Explorer, all versions, NOT supported) for Windows

ICE Desktop for Web is also believed to work (but has not been fully tested) on these browsers:

Chrome/Edge 114 and newer on other platforms

Safari: 16.5 and newer; all platforms

Firefox: 113 and newer; all platforms

Opera: 100 and newer; all platforms

4.2.2.2 Mobile browsers |CE Desktop for Web is not supported on mobile (iOS and Android) web
browsers. Many mobile browsers do not support WebAssembly or the SharedArrayBuffer fea-
ture, and even those that do will find that ICE Desktop has not been optimized (“responsive”) for small
screens.

4.2.2.3 HTTPS is required ICE Desktop for Web will only work when hosted from a server using
a secured connection (HTTPS). This implies the ICE Server must be configured with a fully-qualified
domain name and accompanying SSL certificate.

Why? Our media engine (Engage) relies on a feature called SharedArrayBuffer to oper-
ate. As a result of the Meltdown and Spectreflaw discovered in many CPU architectures, the
SharedArrayBuffer feature can be used by attackers to access information and data that should

Instant Connect Software, LLC 33

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

ICE Technical Operations

be private. To eliminate this risk, browser vendors have restricted the use of this feature to web
pages executing within a “secure context” which demands (among other things) that the page
be loaded over HTTPS. Google provides a detailed description and history of this limitation, here:
https://developer.chrome.com/blog/enabling-shared-array-buffer/.

4.2.3 Connection limitations

Channels in the browser must be configured to use a Rallypoint connection (not multicast/RTP) or
else they will appear disabled and display a “Channel not available on web” message.

However, unlike native clients, the web browsers cannot establish raw TLS sockets with a server. In-
stead, ICE Desktop for Web connects to the Rallypoint using a secured web socket. Since the web
socket cannot share the same port as the TLS socket, the Rallypoint now listens on two ports: typi-
cally 7443 for TLS and 8443 for web sockets.

ICE Desktop for Web requires the following conditions to be met in order for a channel to operate
within a browser:

« Only Rallypoint versions 1.236 and newer are compatible with ICE Desktop for Web. Web clients
will not be able to establish a connection to external or tactical Rallypoints running older soft-
ware.

« Rallypoints must be configured to use port 7443 in ICE Desktop (under Settings - Rallypoints).

+ Tactical Rallypoints (those configured manually) must be configured to enable web socket con-
nections on port 8443 and accept client connections on 7443.

4.2.3.1 Rallypointfailover TheEngage mediaengineintheweb clientdoes notsupportRallypoint
failover. When a channel is configured to use a Rallypoint with multiple ingress addresses, the web
client will connect only to the first address configured, even if that Rallypoint is unreachable.

This limitation may be fixed in a future release.

4.2.4 Certificate concerns

The Rallypoint acts as a server that the browser must establish a connection to using a secured HTTPS
connection. Successfully establishing a connection requires that the Rallypoint present a trusted
server identity certificate to the browser. This implies that the Rallypoint must be configured with
a certificate and private key and the certificate must be issued by an authority trusted by browsers
connecting to it.

Instant Connect Software, LLC 34

ICE Technical Operations

For Rallypoints deployed inside the ICE Server (i.e., those created at the time of installation), the
ingress server identity certificate and key will be used as the identify certificate of the Rallypoint. Re-
call that the server identity certificate is supplied as the first certificate in the PEM bundle entered in
the ICE OS Configuration Wizard (on the TLS page).

When using a widely accepted ingress certificate (one issued by a common, commercial certificate
authority) this should work out of the box. However, for administrators using an “enterprise” certifi-
cate issued by their IT department (sometimes mistakenly called a “self-signed” certificate), things
get complicated.

As of this writing, the Rallypoint is limited to providing browser clients only the identity certificate,
and not the chain of authorities used to issue to it. This has the following limitation:

The root CA certificate AND every intermediate certificate in the signing chain must be in-
stalled and trusted by the browser.

The process for installing and trusting a certificate is platform-dependent (see this article for Windows
and macOS instructions).

Careful: If you do not install/trust all intermediate certificates in the chain, the ICE Desktop for Web
application will appear to work without visible warning, but all channels will display “Channel not
available on web” irrespective of how they are configured.

This problem occurs because of the way the Engage media engine establishes trust with the Rally-
point.

Typically, an administrator only needs to install and trust the root CA certificate on a client system to
allow the browser to navigate to a site without receiving a security error. This works because most
web servers will present the browser with the entire certificate chain required to validate the identity
certificate. So long as the root certificate in the chain is already present and trusted on the client
system, the browser will be able to verify each link in the signing chaining from the server identity to
the root CA.

However, the Rallypoint only supplies its server identity certificate to the client, NOT the entire chain.
If the identity certificate was issued directly by a trusted root CA installed on the client system, this
works fine. But if there is a delegated authority (an “intermediate certificate”) in the chain, as is com-
monly the case, the client browser will NOT be able to verify the Rallypoint’s certificate unless each
of the intermediate certificates and root certificate are all installed and trusted by the client. This is
true even when the web server (the server hosting the ICE Desktop for Web application) has presented
the entire chain to the browser when loading the page. This is because the connection between the
channel and its Rallypoint is distinct from the connection to the web server and the trust between the
web application and the Rallypoint must be established independently.

Instant Connect Software, LLC 35

https://smallbusiness.chron.com/make-computer-trust-certificate-authority-57649.html

ICE Technical Operations

4,3 ICE Server architecture

ICE Serveris authored primarily in Java and makes use of Kafka (an open-source messaging platform)

and Cassandra (an open-source non-relational database).

ICE Server is comprised of the following subcomponents:

Table 9: ICE Server system subcomponents

Resource

Apache Cassandra

CassKop Cassandra Operator

Client Bridge

Elasticsearch

Apache Kafka

Strimzi Kafka Operator

Description

All data persisted by ICE Server is stored in Apache Cassandra, a
distributed, wide column store, NoSQL database management
system designed to handle large amounts of data across severs and
data center, providing high availability with no single point of
failure.

Provides Kubernetes-level administration and management over
Apache Cassandra (database) resources running inside the cluster.

Client bridge terminates ICE Desktop and ICE Mobile WebSocket
connections to the ICE Server, placing messages received from
clients on the platform Kafka message topic (for processing by
Platform Services). Forwards relevant messages from the platform
Kafka message bus to attached clients.

Elasticsearch is a distributed search and analytics engine providing
powerful, lightning-fast search capabilities. Used by ICE Server to
power people and channel search functions in the application. Be
aware that the Kubernetes EFK monitoring and analysis tools ships
with its own Elasticsearch that operates independently of ICE
Server’s.

A stream-processing platform providing a unified, high-throughput,
low-latency platform for handling real-time data feeds. Services
inside of ICE Server communicate with one another using Kafka
message topics.

Provides Kubernetes-level administration and management over
Apache Kafka (messaging) resources running inside the cluster.

Instant Connect Software, LLC

36

ICE Technical Operations

Resource

Model Manager

Platform Services

REST Bridge

Server Bridge

Apache Zookeeper

Description

Responsible for establishing required keyspaces, tables, columns
and topics within Cassandra and Kafka. Manages database table
versioning and migrating data during in-place ICE Server software
updates.

Primary message processing and application business logic.
Platform Services receives messages from a Kafka message topic,
processes them (which may include performing database lookups
or writes), and places a response message back on the topic.

A REST-style facade over the system. Takes incoming HTTP requests,
converts them to Kafka messages destined for Platform Services,
and converts the resulting response message into an HTTP
response.

Similar to Client Bridge, Server Bridge terminates WebSocket
connections established by ancillary server components (like ICE
Telephony, ICE Static Reflectors and ICE Patch Servers).

Apache Zookeeper is a centralized service to maintain naming and
configuration data and to provide flexible and robust
synchronization within distributed systems. Zookeeper keeps track
of status of the Kafka cluster nodes and it also keeps track of Kafka
topics, partitions etc, and keeps them in sync.

Instant Connect Software, LLC

37

ICE Technical Operations

Patch Server Static Reflector

O 0

‘ Model Manager

@ @
Server Bridge . ‘
ICE Mobile @ @ . @
ICE Desktap ; . N
IGE Telephony Ingress Client Bridge : Cassandra
Patch Server (External) .
Static Reflector (External) .
REST Clients T
. —_—
REST Bridge * Platform Services

Rallypoint @ Elastic Search

Kafka

&

Kubemetes

Figure 2: ICE Server system component diagram

4.4 Messages

The ICE Server is a message-oriented system modeled on the concept of services and models. While
messages are not exposed to the end user or the system administrator, this information is provided
to offer a better understanding of how these services operate “under the hood.”

Amessage encapsulatesinformation sent between entities in the system. Messages can be sent, point-
to-point between a single sender and a single receiver or broadcast from a single sender to any entity
interested in receiving the message.

A message is a JSON-formatted string consisting of:

« A message type string, representing the kind of message.

+ A header object indicating the address of the entity that the message is directed to; whether
this message represents a request being made of a service method; and a sender-generated
correlation ID (used to associate a request message with its response message).

+ A payload object consisting of JSON-formatted attribute/value pairs.

Instant Connect Software, LLC 38

ICE Technical Operations

4.4.1 Services

Aserviceis a logical component that provides one or more service methods that can be invoked by an-
other entity in the system by sending a message addressed to it. A service method listens for request
messages addressed to it, performs some process, and emits a response message in acknowledge-
ment. Every method on on every service can be invoked through a REST service API.

4.4.1.1 Example of a message sent to a service An example of a message sent to the Person Ser-
vice requesting a query be performed and the first ten persons matching the search string def be
returned

{
"type'": "person:FindPersons",
"headers": {
"isRequest": true,

"destination": "SERV:person:'",
"correlationId": "c8fb3787-32e4-4296-b8cd-ab8f13c58133"
1,
"payload": {
"messageType": "person:FindPersons",
"attributes": {
"searchString": "def",
"limit": 10
}
+

}

4.4.2 Models

A model represents an addressable entity in the system that is analogous to an object in an object-
oriented programming language. A model encapsulates data (in form of attribute/value pairs) with a
set of operations that can be performed on the data.

4.4.2.1 Capabilities ICE models are able to support a multiple inherence model through capabili-
ties. Models are composed of two or more capabilities; a base capability common to all models, and
one or more type-specific capabilities.

Each capability defines its own set of attributes and methods, the name of each is prefixed with the
type (or namespace) of the capability. This prevents two capabilities from inadvertently aliasing the
attributes or functions of another capability applied to a single model.

Through the base capability, every model contains the following:

Instant Connect Software, LLC 39

ICE Technical Operations

« A permanent, universally unique ID (base: id) that differentiates the object from every other
object in the system. For example, e071175e-2bf8-4c06-96cd-88115ed3e295.

« An address (base:address), consisting of the object’s namespace and ID concatenated to-
gether with a colon and prefixed with SERV:. For example, SERV:person:e071175e-2
bf8-4c06-96cd-88115ed3e295.

+ Amethod (base:GetAttributes) for retrieving the attributes of the model and a method
(base:SetAttributes) for setting attributes.

4.4.2.2 Example of a message sent to a model Anexample of a message addressed to a Channel
model requesting the list of persons participating in the channel:

{
"type": "chan:ListPersons",
"headers": {
"isRequest": true,
"destination": "SERV:chan:5fc7653f-5e57-4569-b74f-1fcd24ff22d6",
"correlationId": "7dffa31lc-9aef-4a2d-b9da-713784035962"
1,
"payload": {
"messageType": "chan:ListPersons",
"attributes": {}
}
}

4.5 Tactical and enterprise modes of operation

Instant Connect offers two primary modes of operation: enterprise-mode in which the system’s con-
figuration (user identities, channels, etc) are managed by a centralized server, and tactical-mode in
which users share channel configurations—called a mission—with one another through a QR code or
a .icefile.

While these are often described as modes, the term is misleading: They interoperate together seam-
lessly in both ICE Desktop and ICE Mobile applications. A user can be logged into an ICE Server and
also communicate on a tactical channel that was shared with them via email, for example. In both
operating models, the same ICE media engine in used to transport audio between users. The primary
difference is how configuration and presence data is distributed across teams.

The table below describes high level features :

Instant Connect Software, LLC 40

ICE Technical Operations

Table 10: Tactical versus enterprise feature support

Feature Enterprise Tactical

Centralized management Supported Not supported
and control of channel

access

Export and distribute Not Supported

channel configurations via supported

file/QR code

PTT over IGMP multicast Supported Supported

PTT over SSL using Supported Supported, but requires deployment of a Rallypoint
Rallypoints component reachable on the network by tactical

clients.
End-to-End PTT encryption ~ Supported Supported

User online/offline presence Supported Supported within the context of a mission (i.e., can tell
if a user is participating in a shared mission, can’t
determine if the user is “online” in a different mission)

User location Supported Supported
Private telephone call Supported Not supported
between ICE users

Public telephone call to Supported Not supported
PSTN via ICE Telephony

Telephone dial-in to Supported Not supported
channel

Atactical user has no login credential (since there is no server to log into) but can establish their own
display name. There is no concept of privileges or “administrator” access in tactical mode since there
is no centralized point of enforcement. Any user has the ability to create and modify channels which
they can freely share with others. To prevent unauthorized users from eavesdropping on a channel,
the creator of the tactical channel may assign an encryption key to the channel. Only users with whom
the channel configuration has been shared will have the key necessary to decrypt audio transmitted
onit.

Instant Connect Software, LLC 41

ICE Technical Operations

4.5.1 Sharing user presence in tactical mode

In tactical-mode, user presence information is conveyed to other users through a special kind of non-
audio channel called the mission control channel. This special channel is shared by all users of a given
mission. Each mission has one and only one mission control channel associated with it. However,
clients can participate in multiple missions at the same time. Enterprise mode uses ICE Server to
convey this information between users; there is no mission control for ICE-managed channels.

Instead of communicating audio traffic, mission control conveys presence, location and other meta-
data and signaling (like emergency alerts). Just like an audio channel, the mission control channel
may be encrypted using a key known only to members of the mission and can be configured for mul-
ticast or Rallypoint network operation.

4.6 Mission file format specification

A mission describes the configuration of zero or more channels including those channels’ transmit
and receive ports, codecs, and Rallypoints. Missions are intended to be shared between ICE users as
files or QR codes.

Third parties interested in writing software to produce their own, ICE-compatible mission files can do
so by using this section as a guide. A . i ce mission file contains a serialized representation of a single
mission object. Object format specification and serialization algorithm is described below.

4.6.1 Mission object
A valid mission consists of a single JSON object with the following properties:

Table 11: Mission file format, mission object definition

Property Type Required Description

meta Meta object Required Provides metadata about this mission including its
creation date and format version. See the Meta
Object section for details.

Instant Connect Software, LLC 42

ICE Technical Operations

Property

id

name

description

groups

Type

String

String

String

Array (group
objects)

Required Description

Required A UUID4 (conforming to RFC4122) that uniquely
identifies this mission from all other missions. The
mission ID MUST be regenerated any time there is a
change to the mission name. The generated value
must be unique for any given name, and missions
configured with the same name should generate
the same ID using a common hashing algorithm.
See the Mission / Group ID Generation section for
details

Required The user-assigned name of the mission, typically
displayed as a title in the user interface. Ideally 16
characters or less; longer names may be truncated.

Optional A short, user-assigned description of the mission.
Should be 256 characters or less; longer
descriptions may be truncated.

Required An array of groups (channels) specified by the
mission, sorted, descending, by group name. See
the Group Object section for details.

4.6.1.1 Metaobject Describesthe creation date, mission format version and other metadata asso-

ciated with the mission.

Table 12: Mission file format, meta object definition

Property Type

type String

version Number Required

created String

Required Description

Required The file format identifier, always equal to the string
ICE-MISSION.

The format version of the mission document; should be 1 for the

initial file format.

Required AnSO-8601 formatted date and time string representing when the

mission was created. For example,
2019-02-07T18:44:43.511Z

Instant Connect Software, LLC

43

ICE Technical Operations

4.6.1.2 Group object Describes the set of channels defined by this mission.

Table 13: Mission file format, group object definition

Property Type Required Description

type Number Required The channel type indicator. Use 1 for talk
(audio) channels; use 2 for mission control
(presencing) channels.

id String Required A UUID4 (conforming to RFC4122, optionally
surrounded by braces) that uniquely
identifies this group from all other groups.
Unless idOverrideis true, the group ID
must be regenerated any time thereis a
change to the group configuration. The
generated value must be unique for any
given configuration, and groups configured
with the same values should generate the
same ID using a common hashing algorithm.
See the Mission / Group ID Generation
section for details.

idOverride Boolean Required Allows the group creator to enable or
disable automatic ID generation.
idOverride: true meansthatit’supto
the user to provide the UUID manually.

description String Optional A short, user-defined, human readable
description of the channel.

name String Required The user-assigned name of the channel,
typically displayed as a title in the user
interface. Ideally 16 characters or less;
longer names may be truncated.

Instant Connect Software, LLC 44

ICE Technical Operations

Property Type Required

cryptoPasswordString Optional

X Address Required
Object

tx Address Required
Object

txAudio Transmit Optional

Audio Object

Description

The cryptographic baseline key material
used to generate the symmetric encryption
key. A 32-byte binary value, represented in
hexadecimal text. May be generated by
hashing a user-generated password. When
this attribute is not present, audio is
transmitted in the clear. It is not acceptable
to pass an empty string to indicate no
encryption; either the attribute is present
with a valid, 32-byte hex value, or it must be
absent from the JSON document.

The receive multicast address and port
associated with this channel. Talk bursts
transmitted on this address and port will be
received by this channel. Typically the
transmit and receive addresses are the
same, but are not required to be. See the
Address Object section for details.

The transmit multicast address and port
associated with this channel. Transmitted
talk bursts will be received by channels
whose rx property specifies this same
address and port. Typically the transmit and
receive addresses are the same but are not
required to be. See the Address Object
section for details.

The transmit audio configuration (codec,
duplex, etc.) used when sending talk bursts.
See the Transmit Audio Object section for
details. This property is only valid on talk
channels (Type 1).

Instant Connect Software, LLC

45

ICE Technical Operations

Property Type Required Description
presence Presence Conditionally Mission control configuration parameters.
Object Required See the Presence Object section for details.

Required for mission control (type 2)
channels; ignored for audio (type 1)

channels.
rallypoints Array Optional A list Rallypoints that this group should
(Rallypoint connect to. An empty array or undefined
Object) implies that the channel does not operate

using a Rallypoint (multicast only).

4.6.1.3 Address object Describes a multicast address and port.

Table 14: Mission file format, address object definition

Property Type Required Description

address String Required An IPv4 or IPv6 multicast address. Note that IPv6 has not been fully
tested.

port Number Required A non-administrative port number (in the range 1000-65535)

4.6.1.4 Transmit audio object Describes the codec, duplex mode and framing specifications for
transmitted audio.

Instant Connect Software, LLC 46

ICE Technical Operations

Table 15: Mission file format, transmit audio object definition

Property Type Required Description

encoder Number Required Specifies the codec used to transmit audio; acceptable values
are:
1: G.711 alaw (64 kbps)
2: G.711 ulaw (64 kbps)
3: GSM 6.10 (13.3 kbps)
10: AMR Narrowband (4.75 kbps)
11: AMR Narrowband (5.15 kbps)
12: AMR Narrowband (5.9 kbps)
13: AMR Narrowband (6.7 kbps)
14: AMR Narrowband (7.4 kbps)
15: AMR Narrowband (7.95 kbps)
16: AMR Narrowband (10.2 kbps)
17: AMR Narrowband (12.2 kbps)
20: Opus Narrowband (6 kbps)
21: Opus Narrowband (8 kbps)
22: Opus Narrowband (10 kbps)
23: Opus Narrowband (12 kbps)
24: Opus Narrowband (14 kbps)
25: Opus Narrowband (16 kbps)
26: Opus Narrowband (18 kbps)
27: Opus Narrowband (20 kbps)
28: Opus Narrowband (22 kbps)
29: Opus Narrowband (24 kbps)
30: MELPe Narrowband (600 bps)
31: MELPe Narrowband (1.2 kbps)
32: MELPe Narrowband (2.4 kbps)

fdx Boolean Optional Full duplex mode when true; half duplex mode when false.
Default fa'lse.

framingMs Number Optional The number of milliseconds of audio to be encapsulated into
each transmitted UDP packet. Typically 20.

maxTxSecs Number Optional The longesttransmit duration (in seconds) allowable on this
channel. When 0 no limit is applied. Default @.

Instant Connect Software, LLC

ICE Technical Operations

Property Type Required Description

noHdrExt Boolean Optional When true no custom RTP headers wills be appended to
transmitted audio packets; useful to disable on interop channels.
Default fa'lse.

4.6.1.5 Presence object Configures the behavior of the mission control channel.

Table 16: Mission file format, presence object definition

Property Type Required Description

format Number Required The presence channel format identifier.
Should be 1.

intervalSecs Number Optional Number of seconds between presence packets.
Default 30.

forceOnAudioTransmitBoolean Optional Forcesthe client to send a presence update
each time they transmit audio. Default fallse.

listenOnly Boolean Optional = When true indicates that the client should
never send its own presence updates on the
channel. Default fa'lse.

4.6.1.6 Rallypoint object An object whose keys represent the unique ID of a defined Rallypoint;
the value of each key is a Host Object representing the Rallypoint’s address and port.

Table 17: Mission file format, Rallypoint object definition

Property Type Required Description
host Host Required Specifies the address and port of the Rallypoint. Note that the
Object X.509 certificate and key used for mutual authentication with

the client is “baked into” the ICE client applications and are not
specified inline here.

Instant Connect Software, LLC 48

ICE Technical Operations

4.6.1.7 Host object Describes a multicast address and port.

Table 18: Mission file format, host object definition

Property Type Description

address String AnIPv4 or IPv6 multicast address. Note that IPv6 has not been fully tested.

port Number A non-administrative port number (in the range 1000-65535)

4.6.2 Serialization specification

Once a JSON-formatted mission object has been defined, it can be serialized using the following algo-

rithm:
1. Create a payload string consisting of the following elements concatenated together:

1. Magic header value: &*x3$el@E

2. Version header value: 001

3. The JSON-formatted mission (as described above), encoded in UTF-8. The equivalent of
calling, in Javascript, JSON.stringify(myMissionObject).

2. GZIP compress (RFC-1952) the payload string.

3. Optionally encrypt the compressed result using the technique described below.

4. Encode the compressed and optionally encrypted result in Base91 format. This value is the
serialized mission payload.

This serialized mission payload can either be written to afile (ending with the . i ce suffix), or used to
produce a QR code. Be aware that QR codes can encode no more than 2,953 bytes of data; if the length
of the serialized mission payload exceeds this constant, the mission is too complex to be represented
as a QR code.

1. When a deflection URL is desired, the binary data to be encoded by the QR code is equal to the
deflection URL, followed by a forward slash and two question marks (/??), then the base91-
formatted result generated in the previous step. For example, http:

2. When no deflection URL is needed, simply create a binary QR code from the base91 encoded
data.

Instant Connect Software, LLC 49

https://tools.ietf.org/html/rfc1952

ICE Technical Operations

A deflection URL hides the mission data inside of an ignored query string parameter of a URL.
This has the effect of making it seem to standard QR code that the QR code simply encodes a
URL. Most will simply open a browser to site referred to by the deflection URL.

4.6.3 Automatic mission and group ID generation

ICE tactical clients support a feature called “automatic channel identification” which generates chan-
nel IDs automatically by hashing relevant components of the channel configuration any time they
change. This has the effect of allowing any two equivalently-configured channels to be considered
the same channel.

Any time a group or mission configuration is changed, the client must recalculate the ID of the group
using a common hashing algorithm. It is important that all clients calculate the same ID for any given
configuration. To achieve this, clients must be able to implement RFC-4122, version 5, commonly
referred to as UUIDV5 (see section: 4.3. Algorithm for Creating a Name-Based UUID).

For backward compatibility, any Mission or Group being imported (from durable storage, QR codes,
etc) must ignore any specified ID and instead favor recalculating the ID based on the provided config-
uration.

UUIDV5 produces an ID from name and namespace input strings. In order for different tools to pro-
duce the same ID these values must be exactly, byte-for-byte identical. The namespace input must
be the literal value d15fbc09-ad8b-4080-be3c-15ab56d08d00. The name input must be the
following group configuration values concatenated (without a delimiter) in this specific order:

. name
. type

. cryptoPassword (omit when the group does not use encryption)
. rx.address

. tx.address

1

2

3

4

5. rx.port
6

7. tx.port

8. For each Rallypoint in the list, concatenate the following:

1. rp.address
2. rp.port

Instant Connect Software, LLC 50

http://www.ietf.org/rfc/rfc4122.txt

ICE Technical Operations

5 ICE Media Engine

The ICE media engine is a set of software libraries written in C/C++ and cross-compiled for all ICE-
compatible platforms. ICE clients achieve high-performance, low-latency audio by using a native li-
brary that runs “close to the metal.”

The ICE media engine has several key responsibilities:

« Managing Audio Hardware: It controls the microphone and speaker hardware on the user’s
device.

« Audio Encryption: It encrypts and decrypts audio packets to ensure secure communication.

+ Audio Encoding and Decoding: It decodes received audio from any supported codec and en-
codes transmitted audio using the codec configured for the channel.

+ Network Communication: It handles receiving and transmitting audio over the network. This
includes establishing and monitoring connections to configured Rallypoints, managing low-
latency jitter buffers to prevent gaps or stuttering audio, and joining or leaving IGMP multicast
groups.

5.1 Encryption
5.1.1 Symmetric Encryption

The ICE media engine uses AES (Advanced Encryption Standard) with 256-bit keys for all symmetric
encryption. The AES algorithm operates in CBC (Cipher Block Chaining) mode to ensure data secu-
rity.

5.1.2 Asymmetric Encryption

During the TLS encryption setup phase, ICE clients use asymmetric encryption to establish a secure
connection between a client application and a Rallypoint. The specific algorithm used is determined
by a cipher agreed upon by both the Rallypoint and the client, based on the X.509 certificates they
exchange during the handshake process.

5.1.3 Symmetric Key Derivation

ICE never stores or transmits encryption keys directly. Instead, keys are algorithmically derived using
the PBKDF2algorithm, approved by the NIST. Here’s how the process works:

Instant Connect Software, LLC 51

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_(CBC)
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/PBKDF2
https://www.nist.gov/

ICE Technical Operations

1. Baseline Key Material (BKM): The incoming passphrase provided by the user, referred to as
the Baseline Key Material (BKM), serves as the foundation for key derivation.

2. Salt and Iterations: The BKM is combined with a 128-bit salt, and the PBKDF2 algorithm per-
forms 15,000 iterations to generate the derived key. (NIST recommends a minimum of 10,000
iterations.)

3. Derived Key: The result is a secure, 256-bit encryption key used for encrypting data.

Note: To simplify the userinterface, ICE Desktop and ICE Mobile label the BKM as the “encryption
key.” While not technically accurate, this term is used to help users understand its purpose as a
parameter for deriving the encryption key.

When sharing channel configurations—either tactically via QR codes and files or through the ICE
Server in enterprise mode—it is the BKM that is transmitted between clients. The derived encryption
key and the salt used to generate it are never shared.

5.1.4 Traffic Encryption

Channels that are encrypted use AES256-CBC, as described above. When traffic is transmitted over
UDP, the entire UDP payload is encrypted. This means that an attacker cannot easily determine if
the traffic is in a known format (such as RTP) or a custom format implemented by ICE. Even if the
attacker correctly assumes that the payload uses a standard format like RTP, decrypting it becomes
significantly more difficult because:

1. The RTP headers are encrypted.
2. Each packet is preceded by a unique initialization vector, increasing the complexity of crypt-
analysis.

When traffic is transmitted over TCP, such as in client connections to Rallypoints or between Rally-
points in a mesh network, it is secured using TLS 1.3. This TLS encryption adds an extra layer of secu-
rity on top of any existing channel encryption. Therefore, if a channel’s traffic is encrypted and flows
through TLS, it becomes double-encrypted in transit.

Itisimportant to note that ICE generally treats all traffic as packets transmitted over UDP. Even if pack-
ets are sent over TCP, ICE processes them as if they were UDP. Essentially, ICE views TLS connections
as secure tunnels, similar to VPN connections, through which regular UDP traffic is transmitted as a
TCP stream.

Instant Connect Software, LLC 52

https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security

ICE Technical Operations

5.2 Required network quality of service

Instant Connect is a real-time audio communications solution that relies on an IP network to trans-
port audio between users of the system. As with all networked, real-time communication systems,
the underlying network’s quality of service (QoS) is critical to the overall performance of the commu-
nication system. The table below describes the QoS required by all network segments on which ICE
is operating.

Each network parameter has an “ideal”, “acceptable” and “unacceptable” range of operation. The
definition of these ranges is as follows:

« Ideal: Uninterrupted voice communication with very little or no perceptible delays, echos, drop-
out, or lost talk bursts.

+ Acceptable: Perceptible degradation in quality, which most users are likely to find acceptable
(especially if network is “ideal” most of the time and enters this range only intermittently).

« Unacceptable: Most users will find the system inoperable or difficult to use.

Table 19: Network quality of service parameters

Parameter Ideal Acceptable Unacceptable Notes

Bandwidth Varies based on usage and
configuration; described in detail in the
following section. For planning, assume

64kbps per user.
Latency (single- <40ms <250ms >250ms When talkers are in close proximity to
direction) one another, sub-40ms latency is

important to prevent a “stadium effect”
in which the same audio from different
sources sounds as though its echoing
from multiple directions. Latency above
250ms introduces perceptible delay and
begins to impair normal human speech
patterns.

Instant Connect Software, LLC 53

ICE Technical Operations

Parameter Ideal Acceptable Unacceptable Notes

Jitter <5ms <30ms >30ms Jitter increases effective latency in the
communication path between talker
and listener. High jitter values combined
with high latency produce noticeable
delay in the audio path and will begin to
impact speech patterns. Further, jitter
measurements above 30ms may result
in degraded or lost audio.

Packet Loss 0% <2% >2% Even small amounts of packet loss
produce noticeable degradation and
artifacts, especially when using
Rallypoints.

5.3 Network bandwidth considerations

There’s a lot that goes into determining how much traffic is going to be produced on your network,
when that traffic is going to be produced, and who’s going to be producing it. Every environment is
different.

Fundamentally, you’ll need a pretty good handle on how many users you’ll have, how many channels
they’ll be active on (listening as well as talking), where they’re located, and what the network looks
like between them.

A key criteria, though, is in knowing what your network transport capabilities are—specifically
whether your network supports bi-directional IP multicast or not. This distinction is critical. In a
multicast environment, the underlying network infrastructure takes care of efficient distribution
of packet traffic; there’s no centralized servers that process and/or forward traffic between users.
Rather, users’ traffic propagates in what is effectively a one-to-many setup.

If your network does not support multicast, you’ll have to have some way in which to create a multicast
overlay to create a simulated multicast environment. While there’s a few ways to do this using 3rd-
party tools; our recommended way is to use Rallypoints as high-performance packet forwarders that
are optimized for ICE-specific operations.

Instant Connect Software, LLC 54

ICE Technical Operations

5.4 Packet streams

Understand that when someone talks on an ICE channel, they produce a stream of packets. Those
packets contain voice data encoded (“compressed,” if you will) with a CODEC (COder/DECoder). The
output from the coder is chopped up into blocks (we call them “frames”) of audio, and sent out on the
network. In any voice conversation, there will always be at least one stream of packets.

5.4.1 Multicasting

Imagine that we have 4 other people listening on the channel that our user is talking on. In a multicast
environment, the amount of traffic on your network is a single stream, because the multicast network
infrastructure makes sure not to needlessly duplicate traffic to the receiving endpoints. So, whether
we have 4 people listening—or 400, or 4,000—we still only have one stream. And that’s terrific because
it means we can scale our user base without worrying too much about how our network is going to be
affected.

Don’t forget, though, that this is for a stream representing a single channel. Each additional channel
where someone is transmitting will create another stream. So, for example, if we have someone talk-
ing on the Alpha channel and another person talking on Bravo channel; we’ll have 2 streams on the
multicast network. If someone talks on Charlie at the same time; we’ll have 3 streams (and so on).

In a multicast environment, the number of streams (and therefore bandwidth utilization) is di-
rectly proportional to the number of people speaking.

5.4.2 Unicasting with Rallypoints

Butwhat if our network doesn’t support multicast? Maybe the enterprise network isn’t engineered for
multicast, or we have to traverse public networks (such as the Internet) where multicastisn’t available.
What happens then?

Here, the distribution of traffic from the person speaking to the people listening has to go via some
sort of central point that all the users are connected to. We call this “unicasting.” The ICE Rallypoint
component provides this centralized point of interconnectivity.

Things like access control, encryption, floor management, audio transcoding, and other functions
usually conducted by servers are delegated to the ICE clients themselves because ICE operates under
the assumption that the network is multicast in nature and that no centralized server architecture
is necessary. ICE Rallypoints are a means to create a “multicast-like” environment on non-multicast
networks. With the understanding, though, that when using Rallypoints, network traffic utilization is
pretty similar to what you’d see in traditional, server-based unicast systems.

Instant Connect Software, LLC 55

ICE Technical Operations

In a unicast environment, a stream coming from one user and being sent to others through a central
point creates multiple streams on the network. The count of those streams is comprised of the stream
coming from the person transmitting, and one stream each for each person receiving it.

In a unicast environment, the number of streams (and therefore bandwidth utilization) is directly
proportional to the number of people speaking and listening.

Obviously unicasting is far less efficient than multicasting and will not scale cleanly in the same way
that multicasting does. In a unicast environment, it’s important that we concern ourselves with how
many people may be sending traffic as well as how many people will be receiving it. And, of course,
we have to be concerned (as with multicasting) with how many channels we have in the system since
it’s a big multiplier in calculating bandwidth utilization.

5.5 Bandwidth calculations
5.5.1 Packet Structure

We’re going to talk a bit below about payloads and headers and “taxes” and other stuff. Keep these
drawings in mind as you read through:

R IP Overhead ------------------ --ICE Overhead oo Audio ----- !

Ethemnet (14 bytes) IP (20 bytes) LIDP (8 bytes) RTP (12 bytes) Payload (nnn bytes)

Figure 3: Clear (unencrypted) UDP packet

Encryption

Overhead
Network

pomTTTTomToooos Overhead T - ICE Overhead -+---- Audio ----- !
Etharnet (14 byles) ‘ IP {20 bytes) ‘ UDP (8 byles) RTP (12 bytes) Payload (nnn bytes) _

Figure 4: Secure (encrypted) UDP packet

5.5.2 AVariety Of CODECs

Different CODECs produce different outputs of varying quality traded against bandwidth utilization.
The choice of which CODEC to use is based on a number of of things including computational load
placed on the devices processing the audio, the desired quality of the audio, the network bandwidth
required to transport it, and interoperability with systems that are limited to using certain CODECs.

Instant Connect Software, LLC 56

ICE Technical Operations

CODEC design must provide a balance between these conflicting goals: How to represent audio in its
highest fidelity, using a few bits as possible, with as little burden on the end-user device CPUs as pos-
sible (“computational complexity”). Historically, computational complexity was always a big factor
as CPUs were pretty slow by today’s high-performance hardware standards, and, therefore, engineers
often chose CODECs that would not tax hardware. Thus, we have a historical proliferation of CODECs
(such as G.711) that uses 64 Kpbs of bandwidth with very low computational complexity. With newer
hardware, we’re free to choose more computationally intensive CODECs that provide a better audio
experience with reduced bandwidth requirements.

To wit: G.711 is fixed at 64 Kbps and produces high-quality audio at low complexity. Opus produces
audio quality that is even better than G.711 with a much-reduced bandwidth footprint. In fact, Opus
operating at 16kbps produces higher audio quality than G.711 requiring four times the bandwidth.
With ICE, you can go all the way down to 6kbps on Opus.

At first glance, you might assume that someone transmitting audio using an Opus 16 CODEC is going
to use 16kbps on the network. But there’s a whole lot of devil in the details.

5.5.3 Packet overhead

Every time a packet of audio (the payload) is sent from a device, it includes information that assists
the network in moving the packet around as well as information that the receiving device needs in
order to know how to handle the payload. It’s not unlike writing a letter to someone: The letter is the
payload, and the envelope it’s mailed in is the information the postal service needs to get your letter
to the receipt.

This information is tacked on to the beginning of the transmitted packet in the form of headers.

5.5.3.1 Packetheaders Thereare quite afew headersthattravel with the payload. Firstis a header
that the receiving endpoint uses to know what do to with the payload. For most of the ICE media
engine’s traffic in this header is the Realtime Transport Protocol, or RTP, header. Then, when using IP
multicast, that resulting RTP packet (consisting of the payload “wrapped” in RTP) is further wrapped
in a User Datagram Protocol, or UDP, header. Then, that UDP packetis wrapped in an Internet Protocol,
or IP, packet. Finally, the IP packet is wrapped in a packet (sometimes called a frame just to confuse
everyone) specific to the underlying transport. This transport could be wired or wireless Ethernet or
some other construct. Each of these headers uses a certain number of bytes for each packet, obviously,
and therefore bandwidth calculations need to take this into account.

Packet overhead (taxes) generally consumes more bandwidth than the actual payload itself!

Forexample: let’s say your CODEC produces a payload of 10 bytes because its optimized to operate ata
very low output rate. Your resulting transmitted packet size (what actually goes out over the network)

Instant Connect Software, LLC 57

https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Ethernet

ICE Technical Operations

consists of these 10 bytes + 12 bytes for RTP + 8 bytes for UDP + 20 bytes for IP + 14 bytes for Ethernet.
So, sending a payload of 10 bytes results in 64 bytes (10+12+8+20+14) being transmitted.

But wait, there’s more... That’s the fixed, guaranteed tax we have to pay the network to get our packet
moved around. No matter what our payload is and regardless of size (for the most part), we’re going
to have these headers on our packets chewing up our bandwidth. The “more” here is encryption.

5.5.3.2 Encryptionoverhead Whatif we want to secure our data to hide as much as possible from
the bad guys?

The answer hereis to encrypt our payload, and, in Instant Connect’s case, the RTP header as well. (ICE
can’t encrypt the UDP, IP, or Ethernet headers as the network then wouldn’t know how to deliver the
datagram.)

For performance and security reasons, ICE uses the Advanced Encryption Standard, or “AES”, encryp-
tion algorithm which produces encrypted data in 16-byte blocks. So, if we encrypt 1 byte of data, our
encrypted outputis 16 bytes. If we encrypt 15 bytes, it is still 16 bytes. If we encrypt 16 bytes, however,
the output is 32 bytes. If we encrypt between 16 and 31 bytes, the output is still 32 bytes. Encrypting
32 bytes, will produce 48 bytes of output. And so on. Basically, AES encrypts on 16-byte boundaries.
That extra padding (which varies in size) is going to affect the size of the data we’re transmitting.

Also, ICE operates AES in what’s known as Cipher Block Chaining, or CBC, mode. And CBC requires
that an extra blob of random data is added to the encrypted output—16 bytes of random data, in fact.
This is known as the Initialization Vector, or IV.

Together, the 16-byte block operation and the IV added to each packet substantially increases the size
of the packet and therefore our bandwidth utilization.

5.5.4 Packet framing

We now know that the overhead placed on our payload is quite substantial in order to get it dropped
into a packet and sent over the network. But we have some wiggle room. Instead of little payloads,
we can send bigger payloads. If our overhead for every unencrypted packet is 54 bytes then the best
way to reduce the bandwidth utilization is to reduce the number of packets being sent.

Let’s say that the 10 bytes of payload consituted 20 milliseconds of audio. That means that for every
1000 milliseconds (1 second) of audio, we’d be sending 50 packets (1000/20). Now, the payload in each
of those packets is 10 bytes and the overhead is 54 bytes. Therefore, every second, we’d be sending
500 bytes of payload (10 bytes of payload * 50 packets) and 2,700 bytes of overhead (54 * 50). The total
number of bytes we’d send every second is therefore 3,200 bytes (500 + 2,700).

Instant Connect Software, LLC 58

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Initialization_vector_(IV)

ICE Technical Operations

However, let’s say we changed the payload size and instead of sending audio every 20 milliseconds,
we send at 40 millisecond intervals. Now, the number of packets we’d send every second halves to 25
packets. The total amount of payload we send is still 500 bytes (now 20 bytes per payload but only 25
packets in a second - i.e. 20 * 25 = 500) but the total overhead is now only 1,350 bytes (54 * 25); a full
50% reduction in overhead!

The tradeoff, though, is we now have to wait for 40 milliseconds before we send any audio; and it
means receivers have to wait 40 milliseconds to receive it. Doing so increases audio latency, which
is typically undesirable, but in a push-to-talk environment this modest increase in latency is not per-
ceived by users.

There’s a bigger risk here, though. If a 20 millisecond packet gets lost on the network, the receiver only
looses 20 milliseconds of audio. If a 40 millisecond packet is lost, the audio dropout is larger. We can
go even bigger, we can send 60 millisecond packets, or 80, or even 100 millisecond packets. Consider
if we sent 100 millisecond packets: the payload size for 100 milliseconds would now be 50 bytes (10
bytes for 20 milliseconds * 5 ... because 100 / 20 = 5), and we’d only be sending 10 packets. Therefore,
in a second, our bandwidth consumption would be 500 payload bytes (as always) plus 540 bytes of
taxes. A total of 1,040 bytes in a second vs 3,200!

All this stuff is equally relevant if our streams are encrypted—but with extras added on for the encryp-
tion initialization vector and padding. Basically, we can treat encryption as simply another, albeit
optional, tax.

Careful: As these numbers get bigger and networks drop or delay packets, audio quality begins
suffering. So we need to be very careful on what numbers we choose.

The considerations above drive us ultimately to packet framing which refers to the size of the audio
payload that we transmit. You’ll see in the bandwidth utilization tables below how sizing changes
bandwidth consumption. These numbers are as accurate as possible but, as with anything technical,
there’s always some wiggling that needs to be considered.

For instance, CODECs such as G.711 and GSM always produce a reliably-sized output. Other CODECs
such as AMR and Opus are variable in size, meaning that they will try to actively reduce the amount
of traffic based on how much the sender is saying, what their volume level is, the complexity of their
voice, and so on. With these so-called VBR CODECs (Variable Bit Rate) you may sometimes see lower
output sizes than listed in the tables. But you should rarely see higher values. Best, though, to add a
“fudge factor” of 1 Kbps or so to the numbers used for planning purposes.

Instant Connect Software, LLC 59

ICE Technical Operations

5.5.5 Comparing UDP and TCP

There’s one more thing to talk about and that’s whether we’re using UDP (User Datagram Protocol) or
TCP (Transmission Control Protocol).

When multicasting, ICE uses UDP as its transport, and all the numbers and discussion above applies.
However, when unicasting via Rallypoint connections, ICE uses TCP as its transport. Like UDP, TCP has
its own overhead associated it (things like as link establishment, packet acknowledgements, heart-
beats, and whatnot).

When we use Rallypoints, TCP is used to convey packets using Transport Layer Security. TLS imposes
further overhead which needs to be taken into account.

Unfortunately, when using TCP and TLS, calculating bandwidth utilization is somewhat nondetermin-
istic in that bandwidth utilization can vary somewhat based on network conditions. The values il-
lustrated in the tables below (those showing TCP over TLS) are calculated as an average, of sorts, of
multiple measurements of actual traffic taken under Internet conditions. We’ve then combined those
calculations with the observed values to arrive at what we believe to be best representative of what
unicast traffic utilization looks like. Of course, your mileage may vary.

5.6 Bandwidth utilization tables

These tables show bandwidth utilization for each CODEC supported by ICE. There are four tables total:
two for IGMP multicast traffic (encrypted and in the clear), and two for unicast (Rallypoint) traffic. Each
table illustrates the breakdown per CODEC with different packet framing. The most efficient framing
size for each codec is highlighted in bold.

5.6.1 Unicast (Rallypoint) bandwidth utilization

Table 20: Bandwidth (Kbps) for unencrypted unicast TCP per framing size (ms)

Codec Rate (Kbps) 20ms 40ms 60ms 80ms 100ms
G.711 ulaw 64.00 102 86 84 84 82
G.711 alaw 64.00 102 86 84 84 82
GSM 6.10 13.30 46 37 33 31 29
AMR 4,75 38 40 40 38 38
5.15 39 37 38 39 39

Instant Connect Software, LLC 60

https://en.wikipedia.org/wiki/Transport_Layer_Security

ICE Technical Operations

Codec Rate (Kbps) 20ms 40ms 60ms 80ms 100ms
5.90 40 40 39 39 41
6.70 40 42 38 39 37
7.40 40 42 40 39 40
7.95 42 43 42 42 39
10.20 40 40 43 43 45
12.20 46 40 47 48 40
Opus 6.00 40 29 26 24 21
8.00 41 32 27 25 23
10.00 44 33 30 27 24
12.00 46 36 32 30 27
14.00 47 40 34 31 28
16.00 50 41 34 34 32
18.0 52 42 39 36 34
20.00 54 43 41 38 34
22.00 55 48 40 40 38
24.00 58 50 45 42 43
Table 21: Bandwidth (Kbps) for encrypted unicast TCP per framing size (ms)
Codec Rate (Kbps) 20ms 40ms 60ms 80ms 100ms
G.711 ulaw 64.00 100 93 90 86 80
G.711 alaw 64.00 100 93 90 86 80
GSM 6.10 13.30 55 40 35 33 30
AMR 4,75 48 48 47 48 49
5.15 49 47 50 49 48
5.90 48 49 50 47 46
6.70 51 45 47 54 48
Instant Connect Software, LLC 61

ICE Technical Operations

Codec

Opus

Table 22: Supported Radio Interoperability Codecs

Profile

Default

Trellisware

Persistent Systems

Cistech

Rate (Kbps) 20ms
7.40 52
7.95 53
10.20 52
12.20 58
6.00 48
8.00 54
10.00 53
12.00 56
14.00 57
16.00 63
18.0 57
20.00 65
22.00 62
24.00 63

Codec

All codecs

MELPe 600bps (50)
MELPe 120bps (51)
MELPe 2400bps (52)
All other codecs
OPUS - Half Duplex
OPUS - Full Duplex
AMR Narrowband

Opus 18k

null
117
117
117
null
112
111
126
125

40ms

53
52
54
52
31
33
36
39
42
43
45
48
50
53

txPayloadType

100ms

51
55
53
53
22
25
27
30
31
33
36
40
38
43

rxIntPayloadType

60ms 80ms

52 55

55 54

52 52

53 55

27 26

29 27

33 28

33 33

36 33

40 36

41 40

43 38

45 40

48 44
rxExtPayloadType
null null
117 79
117 78
117 7
null null
112 118
111 118
126 122
125 118

Instant Connect Software, LLC

62

ICE Technical Operations

Profile Codec

Vocality Opus 18k

5.6.2 Multicast bandwidth utilization

txPayloadType

120

rxExtPayloadType

120

118

Table 23: Bandwidth (Kbps) for unencrypted multicast UDP per framing size (ms)

Codec

G.711 ulaw
G.711 alaw
GSM 6.10
AMR

Opus

Rate (Kbps)

64.00
64.00
13.30
4.75
5.15
5.90
6.70
7.40
7.95
10.20
12.20
6.00
8.00
10.00
12.00
14.00
16.00
18.0
20.00
22.00

20ms

85.60
85.60
34.90
26.35
26.75
27.50
28.30
29.00
29.55
31.80
33.80
27.60
29.60
31.60
33.60
35.60
37.60
39.60
41.60
43.60

40ms

74.80
74.80
24.10
15.55
15.95
16.70
17.50
18.20
18.75
21.00
23.00
16.80
18.80
20.80
22.80
24.80
26.80
28.80
30.80
32.80

60ms

71.21
71.20
20.50
11.95
12.35
13.10
13.90
14.60
15.15
17.40
19.40
13.20
15.20
17.20
19.20
21.20
23.20
25.20
27.20
29.20

80ms

69.40
69.40
18.70
10.15
10.55
11.30
12.10
12.80
13.35
15.60
17.60
11.40
13.40
15.40
17.40
19.40
21.40
23.40
25.40
27.40

100ms

68.32
68.32
17.62
9.07

9.47

10.22
11.02
11.72
12.27
14.52
16.52
10.32
12.32
14.32
16.32
18.32
20.32
22.32
24.32
26.32

rxIntPayloadType

Instant Connect Software, LLC

63

ICE Technical Operations

Codec

Rate (Kbps)

24.00

20ms

40ms

60ms

80ms

100ms

45.60 34.80 31.20 29.40 28.32

Table 24: Bandwidth (Kbps) for encrypted multicast UDP per framing size (ms)

Codec

G.711 ulaw
G.711 alaw
GSM 6.10
AMR

Opus

Rate (Kbps)

64.00
64.00
13.30
4,75
5.15
5.90
6.70
7.40
7.95
10.20
12.20
6.00
8.00
10.00
12.00
14.00
16.00
18.0
20.00
22.00
24.00

20ms

96.00
96.00
44.80
38.40
38.40
38.40
38.40
38.40
38.40
38.40
44.80
38.40
38.40
38.40
44.80
44.80
44.80
51.20
51.20
51.20
57.60

40ms

80.00
80.00
28.80
19.20
19.20
22.40
22.40
22.40
22.40
25.60
28.80
22.40
22.40
25.60
28.80
28.80
32.00
35.20
35.20
38.40
38.40

60ms

74.67
74.67
23.47
14.93
14.93
17.07
17.07
17.07
19.20
21.33
23.47
17.07
19.20
21.33
23.47
23.47
25.60
27.73
29.87
32.00
34.13

80ms

72.00
72.00
20.80
12.80
12.80
14.40
14.40
16.00
16.00
17.60
20.80
14.40
16.00
17.60
19.20
22.40
24.00
25.60
27.20
30.40
32.00

100ms

70.40
70.40
19.20
11.52
11.52
11.52
12.80
14.08
14.08
16.64
17.92
12.80
14.08
16.64
17.92
20.48
21.76
24.32
26.88
28.16
30.72

Instant Connect Software, LLC

64

ICE Technical Operations

5.7 Rallypoint meshing

Perhaps you’ve setup a Rallypoint and have lots of users connecting to it. But you’re running out of
CPU because you have thousands of users talking away like crazy. Or, you have have groups of people
in different parts of the world that need to connect to their own Rallypoints—but they all still want to
communicate with each other. Or, you have a need to provide additional Rallypoints for failover and
redundancy purposes. Or, something else...

The solution here, generally speaking, is to just add more Rallypoints. But, you want all those Rally-
points to interconnect with each other. That’s where Rallypoint meshing comes in.

For this example we’re going to assume we want to setup a bunch of Rallypoints in a cloud environ-
ment such as Amazon Web Services (AWS). We’d like to make those Rallypoints available to our users
spread around the world. And we don’t want to have those users connect to particular Rallypoints.
Rather, we want any user to connect to any available Rallypoint and have the Rallypoints take care of
forwarding traffic amongst themselves to create what looks like a big, centralized, cloud-based Rally-
point to our users.

First, we're going to need something that front-ends all these Rallypoints; offering a single DNS name
(or single IP address) that all our users connect to. Let’s call it cloudrp.example. com. Also, for
purposes of this discussion, we’ll say we’re going to do all this in Amazon Web Services, taking advan-
tage of Amazon’s Elastic Load Balancer.

In an ideal situation, we’d use Rallypoints’ ability to forward traffic to a multicast backbone to create
something like below:

*

Rallypoint 1

-
|:(> -O% Backbone Network

Client Gonnections

*

Load Balancer Rallypoint 2

*

Rallypoint 3

Figure 5: Rallypoint mesh using a multicast backbone

But, sadly, our cloud provider does not support IP multicast (and that is, in fact, true of AWS as well
as most of cloud providers). Also, multicast networks can be difficult to setup and maintain so some-
times its just easier to go with unicast.

Instant Connect Software, LLC 65

ICE Technical Operations

So, we’'d still like to have the logical setup we described above but we have to figure a way to use
something other than a multicast backbone. The answer is to create a Rallypoint Mesh.

A mesh is simply a configuration where Rallypoints connect directly to each other for purposes of
traffic forwarding. This is not too much different from the way in which IP multicast works anyway. In
this case, it’s just that the Rallypoints themselves are doing “multicasting” rather than utilizing the IP
network for that purpose.

As you can see below, what we’ve done is to have each Rallypoint in our cloud connect to every other
Rallypoint. Now, when a client connects (indirectly) to a Rallypoint, it’s traffic is forwarded to other
Rallypoints - just like multicast. It’s actually rather straightforward.

Rallypoint 1

-
———>-0% ’*’
Client Connections

Load Balancer Rallypoint 2

%

Rallypoint 3

Figure 6: Rallypoint mesh without a multicast backbone

You might be wondering if all traffic from all Rallypoints is forwarded to all other Rallypoints. Doing
so would be inefficient, so what Rallypoints do instead is to “subscribe” to each other’s individual
streams. Thus, if client 1 connected to RP1 and client 3 connected to RP3 and both are registered/sub-
scribed for the same stream, that stream’s traffic only flows between RP1 and RP3 - bypassing RP2.
And what about security on these links between Ralypoints? Well, they’re TLS connections just like
from clients to Rallypoints and are subject to the same level of X.509 mutual authentication and TLS
encryption.

Lastly, while latency does increase when a mesh of Rallypoints is being used, it increases only by a
minuscule amount. Remember that Rallypoints are just packets routers; they do not process traffic
payloads, and therefore introduce only milliseconds worth of latency.

6 Satellite server components

A satellite server is an Instant Connect component that extends the functionality of ICE Server but
does not need to be co-located with the primary ICE Server system and does not need to run as a

Instant Connect Software, LLC 66

ICE Technical Operations

workflow inside a Kubernetes cluster. The ability to distribute audio processing elements throughout

an operator’s network improves network efficiency and scale by making it possible to locate traffic-

intensive system elements at the edge of the network, closer to where they are being utilized.

Table 25: Satellite server components

Server

ICE Rallypoint

ICE Desktop

ICE Archiver

ICE Gateway

ICE Patch Server

ICE Static
Reflector

6.1 Satellite deployment models

Support Deployment

Models

Internal, external,
tactical

Internal, tactical

Internal

Internal, external

Internal, external,
tactical

Internal, external,
tactical

Description

Audio routing network element for push-to-talk
channels configured for unicast traffic distribution.

Web server for the ICE Desktop for Web application;
serves HTML and other web resources to a user’s
browser when they browse to the web application.

Captures audio spoken on channels that have been
marked for recording and when provisioned for
linguistics, produces transcriptions of the
recordings.

Bridge and gateway device for interfacing with
telephone PBXs or wireline radio gateways.

Network element used to connect two or more
channels together such that audio heard on one is
also heard on the others.

Bridges unicast and multicast audio streams
typically for donor radio integrations.

« Internal: The component runs as a Kubernetes workload (“pod”) inside the ICE Server. Internal

deployment occurs automatically at the time of installation without requiring any explicit ad-

ministrator action. These components are identified within the ICE application with the name

“internal” or default” (for example, “Default Rallypoint” or “Internal Patch Server”) and cannot

typically be removed or deleted from the system.

« External: The component is installed by an administrator on a Linux, Windows or macOS host

and communicates with ICE Server to receive configuration data. External deployments gener-

ally behave identically to internal deployments; the distinction is simply in where the software

Instant Connect Software, LLC

67

ICE Technical Operations

has been deployed.

+ Tactical: The component is installed by an administrator on a Linux, Windows or macOS host
and operates in an “offline” or stand-alone mode that does not connect to an ICE Server. Con-
figuration of the element is done manually via a ICE Configuration Wizard web application.

6.2 Leader election

Before ICE version 3.6.0, satellite server components lacked full geo-redundancy support. Although a
satellite could automatically migrate from a failed ICE Server data center to an active one, there was
no automated backup for the satellite itself if it failed. Administrators had no option to provision a
backup. In the event of a failure, a new server had to be deployed and manually configured, which
included tasks like recreating and reassigning patches to a patch server.

Starting with version 3.6.0, ICE supports the provisioning of multiple physical servers as part of aserver
group. Within this setup:

« One member server actively operates on behalf of the group.
« The remaining member servers are on standby, ready to take over in case of a failure.

This update eliminates previous limitations, providing robust geo-redundancy and ensuring seamless
failover and backup capabilities.

Why not allow all satellite servers within a group to be active at the same time? The nature of these
servers is that they cannot operate simultaneously without producing undesired—and sometimes
catastrophic—side effects. For example:

Server type Side effect of multiple active

Patch Server Network loops and audio loss. An audio packet bridged by one server is
received by the other, and bridged back to the originating server ad
infinitum. This will consume large amounts of network bandwidth and
result in channel cards that appear “stuck” in a receive state.

ICE Archiver Duplicated recordings and ops log entries. Each active archiver will archive
talk-bursts resulting in duplicated records in the database.

ICE Desktop Server None; not applicable. Multiple ICE Desktop server may run simultaneously
without negative side effects.

ICE Reflector Potential network loops, feedback and other audio corruption depending
on the multicast architecture of the network.

Instant Connect Software, LLC 68

ICE Technical Operations

Server type Side effect of multiple active

ICE Gateway Inoperative communications. Multiple active gateways registering with the
radio or telephone server will result in no gateway successfully establishing
communications.

Rallypoint None; not applicable. Rallypoints are intended to run in an active/active
configuration and form a mesh between them

6.2.1 How a member server is elected leader

All member servers within a server group periodically communicate with each other by sending a bal-
lot message to other members in the group. This process is used to select a leader for the group. By de-
fault, this election cycle occurs every 10 seconds. Ballots can be sent using either a Rallypoint or IGMP
multicast, and both methods can be used simultaneously for increased reliability and resilience.

Itis important to note that leader elections in the context of Instant Connect differ from typical demo-
cratic elections in several key ways:

1. Self-Voting: Member servers do not vote for other member servers; they only vote for them-
selves.

2. Idempotency: Ballots are idempotent, meaning receiving more than one ballot from a candi-
date does not affect the election outcome.

3. Vote Count: The winner of the election is not solely determined by the number of votes re-
ceived.

4. Decentralized Decision-Making: Each member server independently determines the election
winner. There is no centralized registrar counting the ballots. Instead, each server follows a
specific algorithm, outlined in this document, to decide the winner.

Note: Leader elections do not function like conventional democratic elections.

When a member server is created, it is assigned a unique ID used for elections. This candidate ID is
randomly generated as a UUID v4 and remains unchanged once assigned.

6.2.1.1 Ballot messages Every ten seconds, each member server submits a ballot to each other
member server in the group. The ballot message is a JSON-formatted data structure that looks like
this:

{
"id": "a23b4555-e9e7-48ac-b6ce-5f79e56e9cdl",

Instant Connect Software, LLC 69

ICE Technical Operations

"votes'":
llmsll :
Uhesilcl S
"lids":
"hmac'":

l?

1710628477713,
["4d7e92ac-8c63-4950-aeba-4520e52e4cf8"],
["4d7e92ac-8c63-4950-aeba-4520e52e4cf8"],
n

f0e5286e1dc98645d026fa7880e302cfbb25b36d9231473aa2f66ed7c94d7def"

}

Each property in the message is described in the table below:

Property
id

votes

ms

rids

lids

hmac

Description

The unique ID of the member server who is submitting this ballot.

The number of votes this member server is submitting for itself. This value is used to
represent selection priority and makes it possible for an administrator to force a
member server to become active, or to have precedence or subservience in an
election. A negative value means the server is out of service (represented by toggling
the “Enabled” switch in ICE Desktop to the off position); it continues to send ballots
for purposes of quorum, but may not ever be made leader.

A timestamp (represented in milliseconds since the Unix epoch) of when this ballot
was submitted (transmitted to others).

Race IDs: A list of zero or more race IDs that this member server is competing in. While
this election system supports the ability for a member server to participate in multiple
elections (races) simultaneously, in this context, there is only one race.

Leading IDs: A list of zero or more race IDs that this member server is currently the
leader of.

A hashed message authentication code used to verify the authenticity of the ballot and
to assure that a malicious attacker cannot affect the outcome of an election by
submitting bogus ballots. The ms timestamp, in conjunction with this property
prevents replay attacks. This cryptographic hash is based on a salt that is assigned to
the server group and randomly generated at the time the server group is created.

6.2.1.2 Choosing a leader When a server receives a valid ballot from another member, it records

that server as a potential leader candidate. A ballot is considered valid for twice the election period.

For example, a received ballot will be counted in any election that occurs within 20 seconds of the

timestamp on the ballot. This window helps accommodate minor clock differences between servers

and issues related to Nyquist rate.

Instant Connect Software, LLC 70

ICE Technical Operations

During each election, every server determines the leader by ranking candidates based on the num-
ber of votes they receive (the votes property of the ballot). If one server receives more votes than
the others, it is declared the winner. However, if multiple servers have the same priority, they will
receive the same number of votes, resulting in a tie. In such cases, the winner is chosen from the tied
candidates by selecting the server with the lowest ID (sorted alphabetically).

Itis important to note that winning the election does not automatically make a server the leader. Ad-
ditional criteria must be met for the winning server to assume leadership:

1. The group must not already have a leader: If a new candidate server comes online and its ID
would make it the natural leader, it will not assume leadership as long as an existing server is
claiming to be the leader. The exception to this rule is if a new server has a higher priority; it will
immediately take over leadership. This approach prevents unnecessary leader changes while
still allowing administrators to force a server into leadership (by increasing its priority) or into
standby (by decreasing its priority).

2. The quorum must be met: Server groups are configured with a quorum strategy, which repre-
sents the number of elector servers that must submit a ballot for the election to be valid. For
example, if a server group of three servers uses a “majority” quorum strategy, and two servers
fail (leaving only one), the remaining server cannot be elected leader because it does not meet
the quorum requirement. In such cases, no server will be elected leader, and the system will
remain in a standby/offline state. Refer to the “Quorum” section for details and special consid-
erations.

3. The winner must be chosen consecutively: By default, a server must win two consecutive
elections before becoming the leader. This prevents situations where a server briefly declares
itself the leader due to initial conditions when coming online without receiving ballots from
competitors. It also reduces leadership changes caused by temporary network glitches.

Once elected, the leader becomes active while all other servers go into standby mode. Although elec-
tions occur frequently (every 10 seconds, by default), the outcome should rarely change unless a can-
didate server goes offline.

6.2.2 Quorum

The quorum strategy determines the conditions under which a leader election is valid. If an election
is deemed invalid, no server will be designated as the leader, causing the system to stop operating.
Whether this behavior is desirable depends on the nature of the server group’s activities and the de-
sign of the networkin which it operates. Therefore, it’s crucial to understand how these quorum strate-
gies work and choose the appropriate one for your situation.

To address the situation where quorum may be temporarily lost when a new server is added to the

Instant Connect Software, LLC 71

ICE Technical Operations

server group, but the new server has not yet submitted a ballot, a quorumis valid for the current and
next election (that is, no leader will be elected because of quorum, only if a quorum has not been met
for two consecutive elections).

Instant Connect supports three different quorum strategies, each described below:

6.2.2.1 None In this strategy, no quorum is required, and any member server can elect itself if
communication with other servers is lost. This approach prioritizes system availability over network
safety.

When to use this strategy:

+ Use this when there are fewer than three member servers in the group, and having both servers
active simultaneously is preferable to having neither active.

« Ideal for networks likely to become partitioned, where activities in each partitioned site should
continue to function as normally as possible during a partition event.

6.2.2.2 Majority This strategy requires a majority of electors (defined as 50% + 1 for groups of 2
or more servers) to submit a ballot. Note that in a group of two servers, one surviving server will not
take leadership, because 1 is not a majority of 2. However, in a group of only one server, the single
server will self-elect when using the majority strategy. This approach prioritizes network safety over
availability.

When to use this strategy:

+ Use this when there are at least three servers in a group.

6.2.2.3 Nminus1 This strategy attempts to provide an “easy button” for small server groups that
grow from one to three members. The n—1 strategy implies that a quorum exists only when all, or all
but one, member servers are submitting ballots. When the number of member servers in the group is
1 or 2 the strategy behaves the same as none; when the number of servers is 3, it behaves the same
asmajority.

When to use this strategy:

+ Usethiswhenyou intend to deploy one, two, or three member servers and you want the system
to reasonably adapt to the change in the number of member servers.

Instant Connect Software, LLC 12

ICE Technical Operations

6.2.3 Election priority and out-of-service

A member server may be assigned an election priority (by ordering the server within the list of other
member servers in the group, in ICE Desktop settings). The election priority determines the number
of votes that the server assigns itself when balloting. A higher priority results in more votes, implying
that the server will be elected ahead of other servers whenever the higher-priority server is online.

To assure a server will never be elected leader, it can be taken out of service (toggle the “Enabled”
switch to off, in ICE Desktop settings). When a server has been taken out of service it will be assigned
a negative priority which is interpreted by the leader election algorithm as out of service. Out of ser-
vice member servers will continue to vote in leader elections, so their vote counts toward reaching a

quorum.

6.2.4 Interpreting election results

Whenever the state of a member server’s election status changes it will publish a status report that
looks like this:

{
"version": 1,
"state": "healthy",
"active'": false,
"updatedMs": 1722976385590,
"details": {
"message": "GETTING READY: Waiting to win 2 consecutive elections (won
1 so far).",
"httpStatus": {

"state": "notRunning",
"reason": "Not initialized."
1,
"jgmpStatus": {
"state": "notRunning",
"reason": "Not initialized."
b

"rpStatus": {
"state": "healthy"

1,

"won": {
"c6fal352-7650-454c-894b-64f59011b58f": true

s

"elected": {
"c6fal352-7650-454c-894b-64f59011b58f": false

1,

"quorum": {
"c6fal352-7650-454c-894b-64f59011b58f": true

I

Instant Connect Software, LLC 73

ICE Technical Operations

"votes": {
"c6fal352-7650-454c-894b-64f59011b58f": {
"8c3fdcle-ffcO-4ea7-a4d7-4b46011490a3": 1
}
}
}
}

Where each property is described below:

Property Description

version The version of this JSON document’s schema. For internal use only.

state The state of the election system, see below for election state details.

active The value true if this server is active (leading) or false if its operating
in standby.

details/message The last election status message printed to the console on the server. See

below for a description of these messages.

details/ The status of the HTTP ballot transport mechanism. This is not used and
httpStatus will always appear in the notRunning state.

details/ The status of the IGMP (multicast) ballot transport mechanism. This will
igmpStatus appear in the notRunniing state for internal (Kubernetes-hosted)

servers and any external satellite server which was started without
specifying a default NIC. A warning will appear in the console of a server
running without a valid IGMP leader election configuration:

WARNING ElectionConfiguration - IGMP leader
election will be disabled because a default NIC
was not specified. Use "agent --default-nic"to
specify a default NIC.

details/rpStatus The status of the Rallypoint-based ballot transport mechanism. This
should appear in the state healthy. If it appears unhealthy, this
typically indicates a problem with the Rallypoint this server group is
using for elections.

details/won A map of the server group ID, to a boolean indication of whether this
server won the last election.

Instant Connect Software, LLC 74

ICE Technical Operations

Property Description

details/elected A map of the server group ID, to a boolean indication of whether this
server was elected leader. See details above for situation where a server
may win an election but not be elected leader.

details/quorum A map of the server group ID, to a boolean indication of whether the
election met quorum rules.

details/votes A map of server IDs, to the number of votes the server submitted for itself.
Recall that a negative vote count implies that the server has been taken
out of service (disabled); a zero value indicates the server has lost its
connection to ICE Server; and a positive value represents its election
priority.

6.2.4.1 Election state descriptions The election state (show above in the state property) indi-
cates the current operating mode of the server based on election status. It may have one of the fol-
lowing values:

6.2.4.1.1 active Indicatesthe server was elected leader and is actively performing the duties of
its associated server group. When in this state, it will produce the following status message: ACTIVE
Ballots received from <candidateCount> candidates.

6.2.4.1.2 standbyOutOfService Indicatesthe server was taken out of server group by an ad-

ministrator toggling the “Enabled” switch off in ICE Desktop settings. The server will continue to vote

in elections for quorum purposes, but will never become leader, even it is the only remaining member

server. When in this state, it will produce the following status message: DISABLED: This server
has been designated out of service; it will not become active.

6.2.4.1.3 standbyQuorumNotAchieved Indicates that the server did not receive enough bal-
lots from other servers to become leader. This occurs when more servers have failed than the quorum
strategy allows for. For example, this state will be reached by the sole surviving member serverin a
group of three servers when two have failed.

When in this state, the server will produce the following status message: STANDBY: Quorum not
achieved; a leader will not be elected.

Instant Connect Software, LLC 75

ICE Technical Operations

6.2.4.1.4 standbyGettingReady Indicates the server has recently won the leader election
and is waiting to win a consecutive election before taking over as leader. When in this state, the
server will produce the following status message: GETTING READY: Waiting to win 2
consecutive elections (won 1 so far).

6.2.4.1.5 standbyNotWinner Indicates the server did not win the leader election and should
remain in standby. When in this state, the server will produce the following status message:
STANDBY: Ballots received from $candidateCount candidates. Leading
server: <winning server ID> (where <winning server ID> is replaced by the ID of
the member server which was elected leader).

6.2.5 Special considerations

6.2.5.1 Date and time synchronization Leaderelectionina servergroup requiresthatall member
servers transmit timestamped ballots to each other. Therefore, it is crucial that all member servers
agree on the time, regardless of their local time zones.

To ensure leader election functions correctly, all member servers must use the Network Time Protocol
(NTP) or a similar method to stay synchronized within a few seconds of each other. If a server receives
a ballot with an invalid timestamp, it will discard it, which is equivalent to the server not submitting
a ballot at all. This may result in all servers being stuck in either active (leading) or standby mode,
depending on the quorum strategy selected.

6.2.5.2 Loss of connection to ICE Server If a satellite server loses its connection to the ICE Server,
it enters a “not ready” state. In this state, the server continues to send ballots to other servers in the
group but with a vote count of zero. If another server is alive, connected to the ICE Server, and not
marked out of service, it will win the leader election and become the leader. Otherwise, if there are
no other servers in the group or if none are ready and in service, the current “not ready” server will
remain the leader.

When a server is “not ready” but still active (acting as leader), it will coast, whereby:

+ The server retains the configuration it had when it lost connectivity to the ICE Server. For ex-
ample, if a patch server was previously set up to bridge “Channel Alpha” with “Channel Beta,” it
will continue to do so. However, thisis a “best effort” approach. Some capabilities may cease to
function when disconnected from the ICE Server, such as an ICE Archiver not archiving record-
ings while disconnected.

Instant Connect Software, LLC 76

ICE Technical Operations

« The server will continuously attempt to reestablish its connection to the ICE Server. Once re-
connected, it will resynchronize its operating configuration to update any changes made while
it was offline.

6.3 ICE Agent

Satellite components typically consist of a child process and an agent process. The agent is respon-
sible for communicating with ICE Server and managing the configuration and execution of the child
process according to the state of the ICE Server. The child process is responsible for audio and media
processing functions like bridging audio in a patch.

The ICE Agent is a command-line tool that runs on Windows, Linux and macOS:

« Communicates with ICE Server to determine the operating state of the component and continu-
ously update the component’s configuration in response to operating state changes. For exam-
ple, as a user creates, deletes or updates a patch, the agent will respond to these configuration
changes by updating the patch server’s child process configuration accordingly.

+ Manages the lifecycle of the child process, starting and stoping it when necessary and automat-
ically restarting it in case of a failure or crash.

+ Provides aweb application for configuring tactical-mode satellite components in environments
where an ICE Server is not being used.

+ Manages the election of a leader from within a group of satellite server components.

6.4 ICE Rallypoint

Rallypoints provide a common point of connection for channels that cannot rely on an IGMP multicast
network to carry their audio traffic to all interested users.

Rallypoints and their meshing ability were described previously.

6.5 ICE Gateway

The ICE Gateway component links ICE push-to-talk communications with telephone and wireline-
interconnected land mobile radio systems. ICE Gateway enables ICE users to place and receive tele-
phone calls and let telephone callers can dial into specially configured channels. When dialed into a
channel, telephone callers use * to begin speaking (“take the floor”) and # to relinquish it. Note that
the ICE Gateway component is not used for making private calls between ICE users.

Instant Connect Software, LLC 77

ICE Technical Operations

6.5.1 Interface with a call manager

ICE Gateway has two primary modes of operation that determines how it interacts with the call man-
ager:

1. By treating the call manager as a SIP registrar, and registering ICE users and ICE channels (with
dial-in enabled) with the call manager. In this mode, ICE appears to the telephone system as if
it were a group of desk phones or similar endpoints.

2. By establishing a SIP trunk with the call manager. In this mode, ICE Gateway appears as an
auxiliary telephony system intended to handle calls terminating on a defined set of dial peers.

Which mode you choose typically depends on the capabilities of your call manager. When both modes
are supported, SIP trunk mode should be preferred as it offers a more efficient signaling path.

6.5.2 Call setup with ICE clients

While ICE Mobile and ICE Desktop offer soft-phone features—like a dial pad—administrators should be
aware that Instant Connect does not use telephony-native protocols (like SIP) to signal or negotiate
call setup. Instead, all telephony-specific protocols are terminated at the ICE Gateway server and
“converted” into ICE-native messaging and audio.

+ When a call is placed or received by an ICE client, the ICE client exchanges messages with ICE
Server, which, in turn, exchanges messages with ICE Gateway to signal changes in call-state like
“ringing”, “busy”, etc. ICE Gateway translates these ICE-proprietary messages to standard SIP
messages.

« Once a call is established by both parties, ICE Server dynamically creates a full duplex channel
configured to operate in unicast (Rallypoint) mode to carry the audio of the channel.

« While the user experience is quite different from push-to-talk on a channel, the ICE clients are
using the same ICE media engine to convey audio between the ICE Desktop or ICE Mobile appli-
cation to the ICE Gateway server. Just as ICE Gateway “translates” signaling, it does the same for
audio; the audio received over the full-duplex ICE channel is mixed and transcoded into what-
ever media format was negotiated with the call manager.

6.6 ICE Patch Server

The ICE Patch Server is responsible for linking the audio of two or more channels together such that
a talk-burst transmitted on one channel can be heard on the others, too. By default, a patch server
is automatically installed inside the Kubernetes cluster when ICE Server is installed, but additional
patch servers can be installed elsewhere in the network.

Instant Connect Software, LLC 78

ICE Technical Operations

When a patch is created in the ICE Desktop client, the patch is assigned to a specific patch server (the
choice of server is made by the user creating the patch). The patch remains associated with that patch
server for its lifetime. If the patch server is deleted or otherwise becomes non-functional, ICE does
not attempt to automatically relocate or migrate the patch to another server. However, in the case
of a patch server crash, the process will automatically restart and resume patching (the entire restart
process typically takes less than 10 seconds).

6.6.1 Patch limitations

Any two or more channels in the ICE system can be patched together. Active telephone calls can be
included in a patch as well. There are two primary limitations that a user should be aware of when
creating a patch:

+ Channels participating in a patch must be be configured to use the same duplex mode: half-
duplex channels may only be patched with other half-duplex channels; full-duplex channels
must be patched with other full-duplex channels. Telephone calls are treated as full-duplex
channels.

« Achannel (or telephone call) cannot participate in multiple active patches simultaneously. This
restriction exists to assure that audio loops cannot occur in the network. Note that a channel
may, however, participate in multiple inactive patches (enabling a patch administrator to stage
various patch configurations ahead of their needed use and activate them only once necessary).

Aside from these limitations, there are no restrictions on which channels can be patched together. In
particular, it’s worth noting that channels do not have to be configured to use the same codec, nor do
they have to use the same encryption mode or key. Be aware, however, that patching an encrypted
channelwith an unencrypted channel has the effect of making encrypted audio available “in the clear”
as its delivered on channels configured without encryption.

6.6.2 Preventing audio loops

An audio loop exists when a cycle (an infinite loop) is created in the path of audio traversing the system.
Great care must be taken to prevent audio loops since they have the potential to consume all available
network bandwith, effectively creating a denial of service scenario not just for ICE users, but for any
resource reliant on the network. Instant Connect prevents audio loops by preventing a channel from
being an active participant in multiple patches at the same time.

Imagine a scenario where channel Alpha is patched with channel Bravo; channel Bravo is patched
with channel Charlie; and channel Charlie is patch with channel Alpha (Alpha <-> Bravo,Bravo

Instant Connect Software, LLC 79

ICE Technical Operations

<-> Charlie,andCharlie <-> Alpha): Auserwho transmits on Alpha will have their audio
stream retransmitted on Bravo; Bravo’s stream will be retransmitted on Charlie; Charlie’s stream will
be retransmitted on Alpha; and around-and-around we go, quickly consuming all available bandwidth
on the network and bringing the system—and likely other systems—to a halt.

Suffice it to say that bridging/patching systems must be extremely careful not to allow such configu-
rations to exist (a problem known as loop detection). ICE provides a simple solution to this problem,
one that is both easy for administrators to understand and to correctly implement in software: Any
channel can participate in only one patch. In the example above, the loop is created by allowing Al-
pha to participate in two patches: The Alpha/Bravo patch and the Alpha/Charlie patch. The solution
is disallow the second patch.

Note that disallowing a channel to participate in two patches simultaneously does not mean that a
channel cannot be patched to two other channels. A single patch may bridge any number of channels.
Bridging audio between Alpha, Bravo and Charlie can be accomplished by creating a single patch con-
taining all three channels in lieu of three separate patches.

6.6.3 Audio bridging

As described previously, Instant Connect Enterprise is architected around the principle that as little
audio processing be done in the network as absolutely needed. However, in the case of patches, a
design decision was made to centralize patching so that a patch could outlive the administrator or
device that created it.

Recall that ICE clients, and not a centralized media server, are responsible for mixing the audio of
simultaneously received audio together. Furthermore, clients are able to receive and decode audio
streams comprised of heterogenous CODECs, too (that is, each talker on a channel could transmit
using a different CODEC). As a benefit of these capabilities, the patch server does not need to decode
or mix audio streams together. Instead, when processing unencrypted audio streams, the patch server
joins each channel participating in the patch and simply retransmits audio packets received on one
channel to all the other patched channels. For encrypted channels, the process is slightly more CPU-
intensive: the patch server must decrypt and re-encrypt traffic as it gets mirrored on participating
channels.

In order to use patching functionality, channels should have ICE Rallypoint enabled. The patch server
functions like a client in that it connects to Rallypoints to receive and transmit patched audio. This
implies that the patch server must have reachability to any Rallypoint used by a channel.

Note: Patches with multicast channels is not supported.

Instant Connect Software, LLC 80

ICE Technical Operations

6.6.4 External patch server deployment

A patch server can run inside the Kubernetes cluster, or outside on an external server host. When de-

ployed outside of Kubernetes, the patch server is delivered as a child process of ICE Agent. Install ICE

Agent on Linux, Windows, macOS or Docker, and start the patch server usingthe agent external
patch command (consult the product guide for details).

The agent connects to the Server Bridge component in ICE Server via a mechanism similar to the one
used by ICE Mobile and ICE Desktop clients. Once the patch agent registers itself with the ICE Server
it begins receiving patch configuration messages intended for this patch server instance. The agent
is responsible for monitoring configuration changes made on the ICE Server and updating the con-
figuration of the bridging component accordingly. The two processes communicate with each other
through configuration and status files written to a common configuration directory:

« The agent writes conf/ice_engagebridge_bridge.json with a set of patches (and
their constituent channel configurations) and conf/ice_engagebridge_config.json
with process-level configuration.

« Thebridgewrites status/ice_engagebridge_status.jsonwiththepatchserver’sop-
erational report (viewable in human readable form in ICE Desktop “Patch Servers” settings).

The bridging component is designed to listen for changesto ice_engagebridge_bridge.json
and ice_engagebridge_config.json and react accordingly. Similarly, the agent component
listens to status changes written to ice_engagebridge_status.json and publishes them to
ICE Server where they can be viewed in ICE Desktop. Changes to configuration written by the agent
do not produce an outage on existing patches. That is, an administrator is free to create, delete or
update patches without concern for disrupting other patches active on the system.

6.7 ICE Static Reflector

The ICE Static Reflector “reflects” audio traffic from unicast channels (those configured to use a Rally-
point) onto an IGMP multicast network. Static reflectors are primarily used to establish system inter-
operability, like bridging multicast traffic from a land mobile radio gateway or IP desk phone into an
ICE push-to-talk channel.

Recall that ICE clients (such as mobile and desktop apps) can exchange multicast voice traffic with
non-ICE entities, provided those entities support industry standard protocols such as RTP and ICE-
supported CODECS like G.711, AMR, or Opus.

A common use case is when you have an entity such as a two-way radio gateway that “speaks” mul-
ticast and you and need ICE entities to talk to that system. This is easily accomplished by setting up

Instant Connect Software, LLC 81

ICE Technical Operations

a channel on ICE to use the codec the gateway is configured for, and to use the same multicast IP ad-
dress and port configured on the gateway. Assuming the multicast flows cleanly between the gateway
and the clients then everything works fine.

The following diagram illustrates a setup in which we have ICE Mobile and ICE Desktop clients on the
same multicast network as the gateway. And the land mobile radio gateway is configured to forward a
single talk group/channel/frequency on the radio system to bi-directional multicast that an ICE chan-
nel has been configured to use.

J!l\ : Donor Radio
ICE Desktop =1
S =
5 B
@ : O
' Land Mobile Radio Gateway W—
ICE Mobile H

'
Multicast Backbone Network

Figure 7: Radio integration with multicast

This setup works only if the ICE channel has been configured for multicast. In environments where
multicast cannot be by all clients communicating on the channel (because, for example, some users
on the channel are connecting from the open Internet), we need a system component to connect the
multicast traffic produced by the radio system to the unicast/Rallypoint traffic produced by ICE. This
component is the ICE Static Reflector.

As illustrated below, the ICE Static Reflector is placed on the same network as the radio gateway. The
reflector connects to ICE Server (not illustrated) to receive information about what channels it should
be reflecting and how to connect to whichever Rallypoint (or Rallypoints) are used by those chan-
nels.

Instant Connect Software, LLC 82

ICE Technical Operations

RTP
i Static Reflector
)) . i 4-’ Rallypoint
Donor Radio Land Mobile Radio Gateway | ‘__' (or Rallypoint Mesh)
i
!
is | ICE Mobile Clients B e oeskiop Clients

| (-

i

Cisco IP Desk Phone
Multicast Metwork

Figure 8: Radio and telephony interoperability with static reflectors

Understand that multiple reflectors can be configured in your network, and that a given channel can
be reflected on multiple reflectors at the same time. By doing so, multicast traffic can be picked up
at one site, carried across a WAN link, and dropped onto the multicast network of a remote site. This
is sometimes called a MUM trunk (multicast-unicast-multicast) and can be used to interconnect dis-
parate radio systems with or without linking them to ICE users.

6.7.1 External reflector deployment

A static reflector can run inside the Kubernetes cluster, or outside on an external server host. When

deployed outside of Kubernetes, the static reflector is delivered as a child process of ICE Agent. Install

ICE Agent on Linux, Windows, macOS or Docker, and start the reflector using the agent external
reflector command (consult the product guide for details).

As is true for patch servers, the agent assumes responsibility for communications with the ICE Server
and supplying configuration data to the reflector. Similarly, the two containers communicate with
eachother through configuration and status files written to a shared mount point:

« The agent writes conf/ice_reflector_peers.json with a set of channels to be
reflected and conf/ice_reflector_config.json with process-level configuration
similar to that provided for patch servers.

+ The reflector writes status/ice_reflector_status.json with the server’s opera-
tional report (viewable in human readable form in ICE Desktop “Static Reflectors” settings).

Under the hood, a static reflector is a specially configured Rallypoint. You’re advised to ignore this
technical implementation detail, though. These “Rallypoints” should not be substituted for real Ral-
lypoints in your network.

Instant Connect Software, LLC 83

ICE Technical Operations

6.7.1.1 Aword about multicastinterfaces When connectingtoaroutableaddressonthe network,
the host operating system typically chooses the physical network interface that will be used to facili-
tate the connection (for example, wired Ethernet versus WiFi). The choice can be made on the basis
of any number of variables—detected connection speed, latency, user preference, etc.—but one ele-
ment the operating system knows for certain is whether a given network interface can reach the re-
quested address. Interfaces that cannot reach the destination are quickly disqualified when making
this choice.

Multicast poses a unique challenge here: Any multicast-range IP address is joinable from any network
interface on the host computer (this is not strictly true as some network interfaces do not support
IGMP multicast, but we’ll ignore that for this discussion). In other words, any network interface can
“reach” any requested multicast group address. Unfortunately, because each network typically has
its own multicast universe, joining 239.1.1.1 from the WiFi network will not necessarily yield the
same results as joining 239.1. 1.1 from the wired Ethernet interface. Radio multicast traffic made
available on the wired Ethernet network by a radio gateway will likely not be “seen” from the WiFi
interface.

Complicating this matter further, the same multicast group address may be used for different pur-
poses on different networks. 239.1.1.1 on the WiFi network might yield radio traffic from the “Al-
pha” channel and 239.1.1.1 on the Ethernet network might be used for “Bravo” channel. Which
channel’s traffic did you intend to reflect when you asked the software to join 239.1.1.1?

There is simply no way for ICE to know which is the “correct” multicast network interface.

Itis incumbent on the system administrator to understand these details and choose the correct
interface for their environment. Most reports of reflected multicast “not working” are caused by

a network interface misconfiguration.

Lastly, be aware that a single instance of ICE Static Reflector can connect to only one network inter-
face. If you intend to reflect traffic from multiple network interfaces, you will need to deploy multiple
reflectors—one for each interface.

6.7.1.2 Multicast and Docker Typically, a Docker container does not have direct access to the host
machine’s network. Software running inside a Docker container would not be reachable by a client
running on a machine elsewhere on the network. Docker’s software defined network must be config-
ured explicitly to forward the incoming connection from the host machine into the server software’s
Docker container. This becomes quite complicated, especially when dealing with multicast and an
indeterminate range of IP addresses that the software might expect to listen on.

Instead, when running a static reflector inside a Docker container, it’s recommended to configure the
container to run in host networking mode (--net=host). This makes the reflector appear as though

Instant Connect Software, LLC 84

ICE Technical Operations

it were running natively on the host system with full access to the underlying system’s network hard-
ware and eliminating a great deal of complexity.

Unfortunately, as of this writing, Docker supports host networking mode only on Linux. Attempting
to run this software on macOS or Windows might appear to start and run successfully, but audio will

not flow.

Consult the ICE Agent product guide for additional details about using Docker with the static reflec-

tor.

Instant Connect Software, LLC 85

	Document History
	Introduction
	ICE system components
	Third party Kubernetes components
	Architectural design goals
	Scalable, distributed media processing
	Network simplicity
	Platform ubiquity and longevity
	Flexibility in scale

	Simplified system diagram

	ICE OS
	LinuxKit
	Kubernetes
	Benefits of Kubernetes
	Drawbacks of Kubernetes

	Kubernetes deployment models
	On-premises or cloud hosted
	Single-node cluster (ICE OS)
	Multi-node cluster
	Loss of a data center
	Choosing a deployment model
	IP ports used by the system

	Cluster load balancing
	Geographic redundancy
	Single cluster that spans two physical data centers
	Replicate ICE data between independent clusters
	Cluster partitioning
	Problems associated with long-lasting partitions

	ICE Server
	Client connections to ICE Server
	Establishing the connection
	Determination of online/offline user presence
	Determination of a user’s location
	Client reconnect behavior

	Special considerations for ICE Desktop for Web
	Application limitations
	Browser limitations
	Connection limitations
	Certificate concerns

	ICE Server architecture
	Messages
	Services
	Models

	Tactical and enterprise modes of operation
	Sharing user presence in tactical mode

	Mission file format specification
	Mission object
	Serialization specification
	Automatic mission and group ID generation

	ICE Media Engine
	Encryption
	Symmetric Encryption
	Asymmetric Encryption
	Symmetric Key Derivation
	Traffic Encryption

	Required network quality of service
	Network bandwidth considerations
	Packet streams
	Multicasting
	Unicasting with Rallypoints

	Bandwidth calculations
	Packet Structure
	A Variety Of CODECs
	Packet overhead
	Packet framing
	Comparing UDP and TCP

	Bandwidth utilization tables
	Unicast (Rallypoint) bandwidth utilization
	Multicast bandwidth utilization

	Rallypoint meshing

	Satellite server components
	Satellite deployment models
	Leader election
	How a member server is elected leader
	Quorum
	Election priority and out-of-service
	Interpreting election results
	Special considerations

	ICE Agent
	ICE Rallypoint
	ICE Gateway
	Interface with a call manager
	Call setup with ICE clients

	ICE Patch Server
	Patch limitations
	Preventing audio loops
	Audio bridging
	External patch server deployment

	ICE Static Reflector
	External reflector deployment

